TWI Digital Library

781 results in Symposia Papers
  1. Williams S.W., Price D.A., Wescott A., Steuwer A., Peel M., Altenkirch J., Withers P.J., Poad M. 6th International Symposium 2006

    To investigate the potential of mechanical tensioning (MT) to reduce residual stresses in friction stir welding (FSW), thereby eliminating buckling, FSW was performed on 2024-T351 aluminium alloy (thickness 3.2 mm) with different tensile stress leve…

  2. Simar A., de Meester B., Brechet Y., Pardoen T. 6th International Symposium 2006

    Friction stir welding (FSW) experiments were performed on 6005A-T6 (Al, 0.49%Mg, 0.61%Si) alloy plates (thickness 6 mm) using a fully instrumented CNC milling machine, and the microstructure and mechanical properties of the welded joints were invest…

  3. De Backer J., Bolmsjo G. 10th International Symposium 2014

    With regard to the problem of parameter development for friction stir welding (FSW) of workpieces with 3D joints, a self-tuning algorithm is presented based on the tool-workpiece thermocouple (TWT) method for temperature measurement to facilitate th…

  4. Jonckheere C., de Meester B., Simar A. 8th International Symposium 2010

    Similar and dissimilar friction stir welds (FSW) were performed between 2014-T6 and 6061-T6 aluminium alloy sheet (4.70 mm thickness). Weld speed of 450 and 90 mm per minute were used to produce welds described as cold and hot welds respectively. Ad…

  5. Yasui T., Tahara H., Suzuki T., Tsubaki M., Fukumoto M. 9th International Symposium 2012

    Friction stir spot welding (FSSW) experiments were undertaken to fabricate dissimilar metal joints between aluminium and light metals such as magnesium and titanium, and the microstructure and mechanical properties of the weldments were investigated…

  6. Ahmed M.M.Z., Wynne B.P., Rainforth W.M., Addison A., Martin J.P., Threadgill P.L. 10th International Symposium 2014

    Tapered probe and parallel probe tools were employed in friction stir welding of thick section AA 6082-T6 aluminium alloy specimens (thickness 38 mm) and the effect of tool geometry on weldment microstructure and crystallographic texture was investi…

  7. Wu H., Chen Y.C., Prangnell P.B. 10th International Symposium 2014

    Stationary shoulder friction stir welding (SSFSW) and conventional FSW experiments were undertaken on AA 7050-T7651 alloy plates (thickness 6.3 mm) to demonstrate the advantages of SSFSW with respect to surface finish, thermal profile symmetry, HAZ …

  8. Chen G.Q., Feng Z.L., Zhu Y.C., Shi Q.Y. 10th International Symposium 2014

    Based on a friction model incorporating the dynamic coupling between friction and material flow in heat transfer and fluid flow models, a computational fluid dynamics (CFD) methodology was employed to study material flow during friction stir welding…

  9. Wolk J., Everett R.K., Szpara S., Scheck C., Zupan M. 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on commercially pure Ti and Ti-6%Al-4%V plates (thickness 6 mm) by incorporating nickel foil markers of varying thicknesses to reduce forging load, enhance surface finish, eliminate void format…

  10. Loftus Z., Takeshita J., Reynolds A., Tang W. 5th International Symposium 2004

    The feasibility of friction stir welding TIMETAL 21S beta titanium in the annealed condition was investigated. The composition of the alloy is Ti, 14-16%Mo, 2.4-3.2%Nb, 2.5-3.5%Al, 0.15-0.25%Si, max.0.4%Fe, 0.11-0.17%O, max.0.05%C, max.0.05%N, max.0…

  11. Shibayanagi T., Maeda M. 5th International Symposium 2004

    The microstructure of joints produced between dissimilar Al alloys by friction stir welding (FSW) was studied. FSW was performed for joining of 5083/6061 Al alloy workpieces of 5 mm thickness using a rotation speed of 1800 rpm and a welding speed of…

  12. Nishihara T., Nagasaka Y. 5th International Symposium 2004

    In order to develop a method for microjoining by friction stir welding (FSW), micro-FSW trials were conducted on Mg alloy AZ31 (2.97%Al, 0.83%Zn) thin sheets (0.4 mm thickness), and the welding performance was assessed. The micro-FSW system incorpor…

  13. McCune R.W., Ou H., Armstrong C.G., Price M. 5th International Symposium 2004

    Three recently published finite element studies, modelling friction stir welding (FSW) of different aluminium alloys, were reproduced using ABAQUS software and the results were comparatively assessed. The models considered were as follows: heat tran…

  14. Chen C.M., Kovacevic R. 4th International Symposium 2003

    A three-dimensional thermomechanical model of the friction stir welding of aluminium alloy was developed, based on the finite element method, to predict temperature and stress distributions in the workpiece, residual stresses, and the stresses exper…

  15. Packer S., Nelson T., Sorensen C., Steel R., Matsunaga M. 4th International Symposium 2003

    The design of a polycrystalline cubic boron nitride friction stir welding tool, tool holder and machine for use with high melting temperature materials is described. A polycrystalline cubic boron nitride truncated cone tool tip, capable of working a…

  16. Dalle Donne C., Lima E., Wegener J., Pyzalla A., Buslaps T. 3rd International Symposium 2001

    Friction stir welds were made in 4 mm thick sheets of aluminium alloys 2024-T3 and 6013-T6. The stress intensity factor due to residual stresses was determined using the cut compliance method. The residual stress distribution was calculated using th…

  17. Tanaka S., Kumagai M. 3rd International Symposium 2001

    Microstructural examination and a root bend test were used to examine the results of friction stir welding in dissimilar welds of aluminium alloys A-5083 (Al, 4.5%Mg) and A-6N01 (Al, 0.6%Mg, 0.65%Si) of thickness 4 mm. Optimum welding parameters (to…

  18. Magnusson L., Kallman L. 2nd International Symposium 2000

    The tensile and bend properties of friction stir welded butt joints in aluminium alloys 2024-T3, 6013-T6 and 7475-T76 were determined, including welds in 2024 and 7475 subjected to PWHT. The ultimate tensile strength, proof stress at 0.2% strain, an…

  19. Park S.H.C., Sato Y.S., Kokawa H., Okamoto K., Hirano S., Inagaki M. 5th International Symposium 2004

    An investigation is presented into bead-on-plate friction stir welding of type 304 austenitic stainless steel (18.1%Cr, 8.56%Ni) and the relationship between corrosion properties and weld microstructure. Microstructural observations were performed b…

  20. Hirakawa M., Yamamoto H., Shinoda T., Takegami H. 5th International Symposium 2004

    A feasibility study is presented for the joining of mild steel plates (0.2%C, 0.11%Si, 0.63%Mn) of 12 mm in thickness by friction stir welding (FSW). Process optimisation using a combination of operating parameters and tool geometries is discussed, …

Loading...