TWI Digital Library

815 results in Symposia Papers
  1. Vugrin T., Staniek G., Hillger W., Dalle Donne C. 5th International Symposium 2004

    Friction stir butt welds of Al alloy (2024, 6013 and 6056) sheets (4 mm thickness) were examined by conventional ultrasonic inspection with a single focused transducer (25 MHz frequency), facilitating the detection of void-like flaws as well as the …

  2. Thompson J. 4th International Symposium 2003

    A description is presented of the friction stir welding (FSW) machine developed for fabrication of the external fuel tanks for the Space Shuttle. The cylindrical part of the tanks was composed of curved panels welded into barrels with welds of const…

  3. Hannour F., Davenport A.J., Strangwood M. 2nd International Symposium 2000

    The relationship between microstructure and corrosion of friction stir welded joints in aluminium alloys 2024-T351 (Al, 4.43%Cu, 1.42%Mg, 0.61%Mn) and 7010-T7651 (Al, 5.92%Zn, 2.11%Mg, 1.68%Cu) was investigated. Plate of 6.35 mm (0.25 in) thickness …

  4. Nelson T.W., Zhang H., Haynes T. 2nd International Symposium 2000

    Friction stir welded and TIG welded butt joints in aluminium alloy 6061 matrix B4C-reinforced (15-30% B4C) composites were compared. TIG welds were produced using a combination of aluminium alloys 4043 and 4047 as filler metal with pure Ar or a mixe…

  5. Steel R., Larsen S., Davis T., Fleck D. 11th International Symposium 2016

    A non weldable to weldable (N2W) methodology is presented in which friction stir welding (FSW) is used to join a non weldable (but highly wear resistant) material to a weldable material (e.g. a steel insert positioned within the wear resistant mater…

  6. Ivanov E., Theado E. 8th International Symposium 2010

    Friction stir welding (FSW) has been used to weld aluminum alloys such as 7075 to 7075, which is considered not weldable by most other methods. In this application FSW was used to join two dissimilar aluminum alloys 7075 and 6N pure copper in a lap …

  7. Fehrenbacher A., Duffie N.A., Ferrier N.J., Zinn M.R., Pfefferkorn F.E. 9th International Symposium 2012

    A real-time wireless temperature measurement system was developed to facilitate improved temperature measurement at the tool-workpiece interface and a closed-loop control system for friction stir welding (FSW) that maintains weld quality under vario…

  8. Mahoney M., Steel R., Nelson T., Packer S., Sorensen C. 7th International Symposium 2008

    An extensive study of friction stir welding (FSW) of HSLA-65 steel plate (thickness 6 mm) was undertaken, incorporating defect-free friction stir butt welding at a travel speed of 3.4 mm/s, the achievement of low/no distortion FSW by employing appro…

  9. Hinrichs J.F., Smith C.B., Orsini B.F., DeGeorge R.J., Smale B.J., Ruehl P.C. 5th International Symposium 2004

    Following an overview of friction stir spot welding (FSSW) for potential automotive applications (including robotic FSSW in poke welding and C-frame configurations, and pedestal FSSW machines for manual, automatic or robotic use), a FSSW process dev…

  10. Robson J.D., Sullivan A., Shercliff H.R., McShane G. 5th International Symposium 2004

    Variations in microstructure in friction stir welds in AA 7449 (Al, 2.2%Mg, 8.2%Zn, 1.7%Cu, 0.12%Si, 0.15%Fe, 0.2%Mn, 0.05%Cr, 0.25 T plus Zr) in the initially overaged (T7) condition were studied. Isothermal heat treatments were conducted at 350 an…

  11. Dickerson T., Shi Q.Y., Shercliff H.R. 4th International Symposium 2003

    Experimental measurements and thermal modelling were used to determine the transient heat loss into friction stir welding tools and so calculate the welding efficiency. Energy inputs were determined from force and torque measurements made whilst per…

  12. London B., Mahoney M., Bingel W., Calabrese M., Waldron D. 3rd International Symposium 2001

    Experimental methods were developed to track material flow and mixing during the friction stir welding (FSW) process. Experiments were conducted with butt joints of 6.35 mm (0.25 in) thickness 7050-T7451 aluminium alloy plates. The FSW tool was H13 …

  13. Midling O.T., Rorvik G. 1st International Symposium 1999

    Alternative friction stir welding tool shoulder materials to improve welding speed and quality were evaluated. The materials, which were compared with tool steel using a tool designed for exchangeable shoulder inserts, were: nitrided tool steel, Inc…

  14. Fuller C., Mahoney M., Bingel W. 5th International Symposium 2004

    Aluminium alloy fusion welds were modified by friction stir processing (FSP) as a function of FSP location and tool design, and differences between the FSP locations and tools were quantified by microstructure and mechanical property measurements (u…

  15. Palm F., Hennebohle U., Erofeev V., Karpuchin E., Zaitzev O. 5th International Symposium 2004

    As part of a project to develop a physical-mathematical model and software for thermal simulation of the friction stir welding (FSW) process, an initial version "FricSim2.2" was created and verified, using the software tool "SpotFSW" to convert the …

  16. Dickerson T., Shercliff H.R., Schmidt H. 4th International Symposium 2003

    The incorporation of strips of copper foil in friction stir welded aluminium alloy plate was evaluated for flow visualisation without disturbing the welding process. The strips, of 0.1 mm thickness, were placed in various longitudinal and transverse…

  17. Colligan K., McTernan K., Pickens J.R. 3rd International Symposium 2001

    The design and construction of a prototype fixture and a corner fixture for making 90 degree corner joints in aluminium alloys by friction stir welding (FSW) are described. The requirements for a FSW weld fixture are outlined. The fixtures were test…

  18. Andersson C.G., Andrews R.E. 1st International Symposium 1999

    The friction stir welding of copper for the production of spent nuclear fuel storage disposal canisters was investigated. Initial trials were conducted on UNS-C10100 plate of 10 mm thickness. The high temperatures required the use of a sintered tung…

  19. Frigaard O., Grong O., Bjorneklett B., Midling O.T. 1st International Symposium 1999

    A process model for friction stir welding (FSW) of Al-Zn-Mg alloys, used to predict HAZ microstructure and hardness, is presented. Numerical solutions (using a finite difference approach) are developed for heat generation and heat flow. Microstructu…

  20. Enomoto M. 13th International Symposium 2024

    Friction stir welding is widely applied in several industries such as manufacturing rolling stock, automotive parts and ship building. Especially, EV will be expected to popularize in these two or three decades in view of reducing CO2. The parts of …

Loading...