TWI Digital Library

815 results in Symposia Papers
  1. Chen Y.C., Prangnell P.B. 9th International Symposium 2012

    An abrasion circle friction stir spot welding (ABC-FSSW) technique was employed to fabricate dissimilar metal joints between aluminium and steel automotive sheets, and the microstructure, mechanical properties and weld formation mechanisms of the jo…

  2. Hoyos E., Hoyos M., Serna M.C., Lochmuller C., Montoya Y., Cordoba J. 13th International Symposium 2024

    This study addresses the challenges of predicting joint efficiency for friction stir welding (FSW). It adopts a data driven approach, leveraging data analytics to develop accurate predictive models. A database of 1780 records from diverse aluminium …

  3. Skinner M., Edwards R.L., Adams G., Li Z.X. 4th International Symposium 2003

    A description is presented of the self reacting friction stir welding (SR-FSW) process and the specially designed welding head; results are reported from tests determining the mechanical properties of SR-FSW welds in AA-2219 and AA-2195 aluminium al…

  4. Fujimoto M., Watanabe D., Abe N., Sato Y.S., Kokawa H. 7th International Symposium 2008

    Similar overlap and dissimilar butt joints were fabricated by friction stir spot joining of AA 6061-T6 (Al, 1-1.1%Mg, 0.66-0.67%Si) and AA 5052-H34 (Al, 2.58%Mg) sheets of thickness 1 and 2 mm, respectively, and microstructural analysis was used to …

  5. Nelson T., Sorensen C., Packer S., Allen C. 7th International Symposium 2008

    A friction stir processing (FSP) technique was employed to fabricate D2 steel hunting knife blades with long-life cutting edge retention, and blade integrity tests were undertaken. The FSP tool design was a convex scroll shoulder step spiral and the…

  6. Midling O.T., Rorvik G. 1st International Symposium 1999

    Alternative friction stir welding tool shoulder materials to improve welding speed and quality were evaluated. The materials, which were compared with tool steel using a tool designed for exchangeable shoulder inserts, were: nitrided tool steel, Inc…

  7. Fehrenbacher A., Duffie N.A., Ferrier N.J., Zinn M.R., Pfefferkorn F.E. 9th International Symposium 2012

    A real-time wireless temperature measurement system was developed to facilitate improved temperature measurement at the tool-workpiece interface and a closed-loop control system for friction stir welding (FSW) that maintains weld quality under vario…

  8. Dickerson T., Shi Q.Y., Shercliff H.R. 4th International Symposium 2003

    Experimental measurements and thermal modelling were used to determine the transient heat loss into friction stir welding tools and so calculate the welding efficiency. Energy inputs were determined from force and torque measurements made whilst per…

  9. Yasui T., Hirosawa K., Yokoyama H., Harada M., Maeda T., Suzuki A., Hirosawa K. 13th International Symposium 2024

    Multi-material structure is effective way to achieve lightening of vehicles for reduction of CO2 emission. Thus, carbon fiber reinforced thermo-plastic (CFRTP) and aluminum alloy (Al) are useful materials for lightening of vehicles. For fabrication …

  10. Steel R., Larsen S., Davis T., Fleck D. 11th International Symposium 2016

    A non weldable to weldable (N2W) methodology is presented in which friction stir welding (FSW) is used to join a non weldable (but highly wear resistant) material to a weldable material (e.g. a steel insert positioned within the wear resistant mater…

  11. London B., Mahoney M., Bingel W., Calabrese M., Waldron D. 3rd International Symposium 2001

    Experimental methods were developed to track material flow and mixing during the friction stir welding (FSW) process. Experiments were conducted with butt joints of 6.35 mm (0.25 in) thickness 7050-T7451 aluminium alloy plates. The FSW tool was H13 …

  12. Hinrichs J.F., Smith C.B., Orsini B.F., DeGeorge R.J., Smale B.J., Ruehl P.C. 5th International Symposium 2004

    Following an overview of friction stir spot welding (FSSW) for potential automotive applications (including robotic FSSW in poke welding and C-frame configurations, and pedestal FSSW machines for manual, automatic or robotic use), a FSSW process dev…

  13. Ivanov E., Theado E. 8th International Symposium 2010

    Friction stir welding (FSW) has been used to weld aluminum alloys such as 7075 to 7075, which is considered not weldable by most other methods. In this application FSW was used to join two dissimilar aluminum alloys 7075 and 6N pure copper in a lap …

  14. Mahoney M., Steel R., Nelson T., Packer S., Sorensen C. 7th International Symposium 2008

    An extensive study of friction stir welding (FSW) of HSLA-65 steel plate (thickness 6 mm) was undertaken, incorporating defect-free friction stir butt welding at a travel speed of 3.4 mm/s, the achievement of low/no distortion FSW by employing appro…

  15. Robson J.D., Sullivan A., Shercliff H.R., McShane G. 5th International Symposium 2004

    Variations in microstructure in friction stir welds in AA 7449 (Al, 2.2%Mg, 8.2%Zn, 1.7%Cu, 0.12%Si, 0.15%Fe, 0.2%Mn, 0.05%Cr, 0.25 T plus Zr) in the initially overaged (T7) condition were studied. Isothermal heat treatments were conducted at 350 an…

  16. Yoshikawa K. 4th International Symposium 2003

    This paper describes the joining criterion for lap joining of dissimilar metal materials of aluminum and stainless steel by friction stir. A criterion for evaluating the joined state or non-joined state is proposed, which is led by the concept based…

  17. Schuddekopf S., Mienert G., Bohm S. 12th International Symposium 2018

    With regard to the production of wear resistant friction stir welding (FSW) tools by laser implantation of ceramic particles, an investigation was undertaken to examine the effect of laser implantation on tool surface hardness, abrasive wear and lif…

  18. Van Haver W., Deplus K., de Meester B., Simar A., Van Daele W., Defrancq J., Dhooge A. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on thin sheet specimens (thickness 0.8 mm) of 5754-H111 alloys (Al, 2.7%Mg) in a butt joint configuration, and the influence of process conditions on microstructural, mechanical and corrosion propert…

  19. Aldanondo E., Arruti E., Ormaetxea A., Echeverria A. 10th International Symposium 2014

    With regard to the production of aluminium alloy T joints for stiffened panel construction by friction stir welding (FSW), an investigation is presented into the fabrication of FSW T joints with AA 6082-T6 alloys and the influence of welding paramet…

  20. Peng C., Luan G.H. 10th International Symposium 2014

    Friction stir welding was employed to fabricate dissimilar joints between 5A06-H112 aluminium alloy (Al, 5.8-6.8%Mg, 0.5-0.8%Mn) and 304L stainless steel (0.03%C, 18-20%Cr, 8-11%Ni) and material flow behaviour was investigated by microstructure obse…

Loading...