TWI Digital Library

781 results in Symposia Papers
  1. Chung Y.D., Fujii H. 8th International Symposium 2010

    The influence of tool and plate positions on the friction stir welding of F82H ferritic/martensitic steel (0.1%C, 8%Cr, 2%W, 0.2%V, 0.04%Ta) and austenitic stainless steels 304 and 316 was investigated. Stainless steel compositions were: 304 (0.08%C…

  2. Shrivastava A., Zinn M., Duffie N.A., Pfefferkorn F.E., Smith C.B., Ferrier N.J. 11th International Symposium 2016

    An approach to welded joint inspection incorporating in situ characterisation of weld quality was developed to facilitate the detection of discontinuities (e.g. voids and volume defects) during friction stir welding (FSW). FSW experiments were perfo…

  3. Perinet R., Goussain J.C., Da Costa B. 5th International Symposium 2004

    The feasibility of friction stir welding (FSW) for welding aluminium alloy 7020, used for the construction of light armoured fighting vehicles, was investigated and compared with MIG welding. Two joint configurations were tested: butt welding in 100…

  4. Song M., Kovacevic R. 4th International Symposium 2003

    A model which considers heat transfer to both tool and workpiece was developed to predict temperature distributions for the friction stir welding (FSW) process. The model assumes a cylindrical pin generating heat at the interface by friction, and th…

  5. Nerman P., Andersson J. 4th International Symposium 2003

    Different aluminium alloys were joined by friction stir welding (EN AW-5754-H14 to sheets of the same material, extruded profile EN AW-6063-T6 sheets to high pressure die cast EN AC-46000) and characterised by x-ray and microscopy studies, and the m…

  6. Johnson R. 4th International Symposium 2003

    The weldability of magnesium alloys by friction stir welding was studied using three die-cast alloys of thickness 6 mm (AM50 and AM60 Mg-Al-Mn alloys; AZ91 Mg-Al-Zn alloy) and one wrought alloy of thickness 6.4 mm (AZ231 Mg-Al-Zn alloy). Surface app…

  7. Xu S., Deng X. 4th International Symposium 2003

    Finite element models of the friction stir welding of aluminium alloys are reviewed and the results compared with experimental measurements. Contact between the pin and the workpiece is considered in two ways: frictional contact; or assuming the mat…

  8. Aota K., Okamura H., Masakuni E., Takai H. 3rd International Symposium 2001

    Experiments were conducted to compare heat input and weld hardness in friction stir welding (FSW) and MIG welding of aluminium alloy. Material A-6N01-T5 (Al, 0.8%Mg, 0.6%Si) of thickness 4 mm was used. The heat inputs were measured by calorimetry. H…

  9. Thomas W.M., Braithwaite A.B.M., John R. 3rd International Symposium 2001

    The Skew-Stir™ variant of friction stir welding (FSW), in which the axis of the tool is at an angle to that of the machine spindle, is described. The technique provides an improved path for metal to flow around the tool during welding, resulti…

  10. Zhang J.Z., Pedwell R., Davies H. 2nd International Symposium 2000

    Fatigue crack initiation and propagation was studied in friction stir welded aluminium alloy 7010-T7651 and also in the parent alloy, using a combination of theoretical and experimental techniques. Finite element analysis was used to model the stres…

  11. von Strombeck A., dos Santos J.F., Torster F., Laureano P., Kocak M. 1st International Symposium 1999

    The relationship between microstructure and properties, and the influence of microstructure on the fracture toughness of friction stir welded aluminium alloys with weld zone strength undermatching were investigated. Welds were made in 5005-H14, 2024…

  12. Svensson L.E., Karlsson L. 1st International Symposium 1999

    The fine scale precipitation in the nugget zone and in the HAZ of a weld in aluminium alloy AA-6082 (Al, 0.7%Mg, 0.5%Mn, 0.9%Si) of thickness 5-10 mm made by friction stir welding (FSW) was examined using transmission electron microscopy. The dissol…

  13. Fukumoto M., Yasui T., Shimoda Y., Tsubaki M., Shinoda T. 5th International Symposium 2004

    Welding trials are reported to demonstrate joint formation between S45C mild steel and aluminium alloy 6063 using a friction stir diffusion process. Welding experiments were undertaken using a machining centre with a cemented carbide rotating tool, …

  14. Mercado U.A., Ghidini T., Dalle Donne C., Braun R. 5th International Symposium 2004

    The effects of post weld heat treatments on the mechanical properties and corrosion resistance of friction stir welded dissimilar aluminium alloy joints (2024/6056) were studied. Sheets of 4 mm thickness were first joined in heat treatments T3 for 2…

  15. De Vuyst T., D'Alvise L., Simar A., de Meester B., Pierret S. 5th International Symposium 2004

    A direct modelling approach ("SAMCEF" software finite element simulation) coupled with an inverse model, based on genetic algorithm optimisation (MAX software), was applied to the friction stir welding (FSW) process for two aluminium alloys (6005A-T…

  16. Desrayaud C., Heurtier P., Allehaux D., Montheillet F. 5th International Symposium 2004

    Thermomechanical and microstructural modelling were performed for the friction stir welding process, simulating the thermal diffusion during and after welding (in the cooling stage), and comparing the results with experimental data obtained for fric…

  17. Dickerson T., Shercliff H.R. 4th International Symposium 2003

    The paper comprises copies of the presentation slides which describe the development of welding experiments and equipment to provide experimental data to validate process models of the friction stir welding process. Data obtained include tool parame…

  18. Sato Y.S., Kokawa H., Enomoto M., Jogan S., Hashimoto T. 3rd International Symposium 2001

    The relationship between microstructure and hardness was investigated in friction stir welded aluminium alloy 6063-T5. The alloy thickness was 6 mm. Hardness profiles were measured across the stir zone. The microstructure of the as-welded and postwe…

  19. Yoshikawa K., Harano T. 3rd International Symposium 2001

    The feasibility of joining layers of dissimilar metals (aluminium and steel) by friction stir welding (FSW) was investigated. Aluminium (A-1050-O) was placed above steel (JIS S50C carbon steel). The tool revolution was 3000 rpm and the tool feed rat…

  20. Engelhard G., Hillers T., Pellkofer D. 3rd International Symposium 2001

    The development of orbital friction stir welding (FSW) technology for joining aluminium pipes for gas insulated power transmission lines (GIL) is described. The equipment is outlined: hydraulic unit, control panel, FSW head with steel wire rope and …

Loading...