TWI

781 results in Symposia Papers
  1. Zettler R., dos Santos J.F., Donath T., Beckmann F., Lohwasser D. 6th International Symposium 2006

    A friction stir welding (FSW) procedure, incorporating the use of different tool pins in combination with concave or scroll type shoulders, was employed to join various aluminium alloys; material flow was investigated with the aid of computer micro-…

  2. Weigl M., Gratzel M., Bergmann J.P. 12th International Symposium 2018

    With regard to the development of the stationary shoulder friction stir welding (FSW) technique as a long term loading joining process offering enhanced weld seam mechanical properties, an investigation is presented into coordinated material flow be…

  3. Li Y., Shen J., Wen L.B. 10th International Symposium 2014

    Friction stir spot welding experiments were undertaken on AZ31 magnesium alloy (Mg, 3%Al, 1%Zn, 0.2%Mn) sheets (thickness 2 mm) in order to investigate the influence of a flame spray gun rapid preheating process on the microstructures and mechanical…

  4. Chan C.Y., Prangnell P.B. 8th International Symposium 2010

    The microstructure, particle refinement and homogeneity of distribution of the refined particles during the friction stir processing (FSP) of AlSi alloys were investigated. A commercial hypo-eutectic LM24/A380 Al-8.9%Si gravity die cast alloy (26 mm…

  5. Kahnert M., Knerr D., Heinrich G., Tessier I., Wild E., Windisch M., Hegels J. 11th International Symposium 2016

    The development of friction stir welding (FSW) technology for the Ariane 5 ME heavy launch vehicle project is illustrated with respect to the superior material properties of FSW within the parameter development and the manufacturing of circumferenti…

  6. Yasui T., Kamihara T., Fukumoto M. 11th International Symposium 2016

    Dissimilar joints between an AA 5052 aluminium alloy sheet (thickness 1 mm) and an alumina plate (thickness 10 mm) were fabricated by friction stir spot welding (FSSW) and their microstructure and mechanical properties were investigated. Welding was…

  7. Park S.H.C., Sato Y.S., Kokawa H., Okamoto K., Hirano S., Inagaki M. 5th International Symposium 2004

    An investigation is presented into bead-on-plate friction stir welding of type 304 austenitic stainless steel (18.1%Cr, 8.56%Ni) and the relationship between corrosion properties and weld microstructure. Microstructural observations were performed b…

  8. Hirakawa M., Yamamoto H., Shinoda T., Takegami H. 5th International Symposium 2004

    A feasibility study is presented for the joining of mild steel plates (0.2%C, 0.11%Si, 0.63%Mn) of 12 mm in thickness by friction stir welding (FSW). Process optimisation using a combination of operating parameters and tool geometries is discussed, …

  9. Shi Q.Y., Dickerson T., Shercliff H.R. 4th International Symposium 2003

    A thermomechanical finite element model of the friction stir welding process, which considered temperature distributions in the workpiece and tool loadings, was developed and validated by comparing the model simulations with experimental data for th…

  10. Lahti K., Larsson R. 4th International Symposium 2003

    A discussion is presented on the industrial use of the friction stir welding (FSW) process looking at cost issues and technological developments. The cost implications of introducing FSW into production areas and the calculation of returns on invest…

  11. Ding R.J. 2nd International Symposium 2000

    The forces exerted on the pin of a friction stir welding tool with a variable length pin (retractable pin-tool) were measured whilst welding aluminium alloy 2195 plate of 8.4 mm thickness, to develop a closed loop control system. Forces were measure…

  12. Lienert T.J., Gould J.E. 1st International Symposium 1999

    The feasibility of friction stir welding steels was investigated using mild (low-carbon) steel plate (AISI-1010) of 6.4 mm (0.25 in) thickness. Temperature distributions were predicted using a simple thermal model. Tool wear was assessed by determin…

  13. Nelson T.W., Hunsaker B., Field D.P. 1st International Symposium 1999

    Microstructural evolution in friction stir welded commercially pure aluminium 1100-O plate was investigated. Plate of thickness 6.35 mm (0.25 in) was welded using rotational speeds of 700 and 1200 rpm, and welding speeds of 180 and 580 mm/min. The m…

  14. Loftus Z., Takeshita J., Reynolds A., Tang W. 5th International Symposium 2004

    The feasibility of friction stir welding TIMETAL 21S beta titanium in the annealed condition was investigated. The composition of the alloy is Ti, 14-16%Mo, 2.4-3.2%Nb, 2.5-3.5%Al, 0.15-0.25%Si, max.0.4%Fe, 0.11-0.17%O, max.0.05%C, max.0.05%N, max.0…

  15. Shibayanagi T., Maeda M. 5th International Symposium 2004

    The microstructure of joints produced between dissimilar Al alloys by friction stir welding (FSW) was studied. FSW was performed for joining of 5083/6061 Al alloy workpieces of 5 mm thickness using a rotation speed of 1800 rpm and a welding speed of…

  16. Nishihara T., Nagasaka Y. 5th International Symposium 2004

    In order to develop a method for microjoining by friction stir welding (FSW), micro-FSW trials were conducted on Mg alloy AZ31 (2.97%Al, 0.83%Zn) thin sheets (0.4 mm thickness), and the welding performance was assessed. The micro-FSW system incorpor…

  17. McCune R.W., Ou H., Armstrong C.G., Price M. 5th International Symposium 2004

    Three recently published finite element studies, modelling friction stir welding (FSW) of different aluminium alloys, were reproduced using ABAQUS software and the results were comparatively assessed. The models considered were as follows: heat tran…

  18. Chen C.M., Kovacevic R. 4th International Symposium 2003

    A three-dimensional thermomechanical model of the friction stir welding of aluminium alloy was developed, based on the finite element method, to predict temperature and stress distributions in the workpiece, residual stresses, and the stresses exper…

  19. Packer S., Nelson T., Sorensen C., Steel R., Matsunaga M. 4th International Symposium 2003

    The design of a polycrystalline cubic boron nitride friction stir welding tool, tool holder and machine for use with high melting temperature materials is described. A polycrystalline cubic boron nitride truncated cone tool tip, capable of working a…

  20. Dalle Donne C., Lima E., Wegener J., Pyzalla A., Buslaps T. 3rd International Symposium 2001

    Friction stir welds were made in 4 mm thick sheets of aluminium alloys 2024-T3 and 6013-T6. The stress intensity factor due to residual stresses was determined using the cut compliance method. The residual stress distribution was calculated using th…

Loading...