TWI Digital Library

815 results in Symposia Papers
  1. Kuroiwa R., Aoki Y., Fujii H., Murayama G., Yasuyama M. 11th International Symposium 2016

    The linear friction welding of carbon steel using low frequency and low amplitude so as to weld below the A1 transformation temperature and so avoid martensitic transformation was investigated. The end faces of JIS-S45C carbon steel (0.48%C, 0.77%Mn…

  2. Upadhyay P., Reynolds A.P. 9th International Symposium 2012

    Friction stir welding experiments were undertaken on rolled plates (thickness 25.4 mm) of AA 6061-T6 aluminium alloys to investigate the role of backing plate material on thermal gradient changes in the through-thickness direction. Welding was perfo…

  3. Lim Y.C., Squires L., Miles M., Wang Y.L., Pan T.Y., Feng Z.L. 10th International Symposium 2014

    A friction bit joining (FBJ) process was developed to facilitate spot joining of dissimilar metals and the microstructure and mechanical properties of the welded joints were investigated. The material system considered comprised sheet specimens (thi…

  4. Lombard H., Hattingh D.G., James M.N., Steuwer A. 6th International Symposium 2006

    Synchrotron x-ray diffraction measurements were used to obtain residual stress state data for welded joints made by friction stir welding (FSW) in AA-5083-H321 aluminium alloys as a function of process parameters (rotational speed and feed rate). Bu…

  5. Mestek M., Sunger S., Kahnert M., Zah M.F. 9th International Symposium 2012

    With regard to the development of spin-formed domes for aerospace cryogenic fuel storage tanks, an investigation is presented into a friction stir welding (FSW) process for AA 2219 and AA 2195 aluminium alloys and the influence of FSW tool and proce…

  6. Sato Y.S., Susukida S., Kokawa H., Omori T., Ishida K., Imano S., Park S.H.C., Sugimoto I., Hirano S. 11th International Symposium 2016

    An investigation was undertaken into the wear mechanism and dominant material factors in relation to friction stir welding (FSW) tools made from precipitation strengthened, cobalt based alloys during FSW of Ti, 6%Al, 4%V alloys. Various gamma-gamma'…

  7. Regev M., Spigarelli S. 10th International Symposium 2014

    Magnesium alloy AZ31H-H24 sheet of 3.175 mm in thickness was friction stir welded (FSW) using an H-13 tool having a shoulder of 20 mm diameter and a slightly tapered pin (4.5-5.5 mm diameter). Welds were made at 1000-2000 rpm and 20-300 mm/minute. T…

  8. Rodrigues D., Costa M.I., Leitao C. 12th International Symposium 2018

    A coupled numerical and experimental investigation was undertaken to examine residual stress fields and thermal distortion in lap joints made from AA 5754-H22 alloy sheets (thickness 1 mm) by friction stir welding in order to examine the influence o…

  9. Sorensen C.D., Nelson T.W., Packer S.M. 3rd International Symposium 2001

    The use of a new tool material, polycrystalline cubic boron nitride (PCBN), developed by Brigham Young University in association with Advanced Metal Products, for friction stir welding (FSW) high-temperature materials was investigated. The manufactu…

  10. Dawes C.J., Thomas W.M. 1st International Symposium 1999

    Friction stir welding tool developments to enhance the range of process applications, welding speed and quality are described. The scroll shoulder tool has a shoulder profile which moves surface material towards the probe. It improves surface qualit…

  11. Dodds S., Jones A.H., Cater S. 9th International Symposium 2012

    Friction stir processing (FSP) experiments were undertaken on annealed AISI 420 stainless steel plates (thickness 6 mm) in order to compare three methods for assessing tool wear. The investigations incorporated two tool compositions (WC-Co or polycr…

  12. Fujii H., Kato H., Nakata K., Nogi K. 6th International Symposium 2006

    Friction stir welding (FSW) was employed to weld Mo and Ti sheets (thickness 1.5 and 2 mm, respectively), the effects of process conditions on weldability as well as mechanical properties and microstructure of joints was investigated, and the import…

  13. Sato Y.S., Kurihara Y., Kokawa H. 6th International Symposium 2006

    Friction stir welding (FSW) experiments were performed to join two dissimilar aluminium alloys, AA-7075 (Al, 5.58%Zn, 2.48%Mg, 1.38%Cu) and AA-2024 (Al, 4.5%Cu, 1.36%Mg), in a butt configuration, and the microstructural and hardness characteristics …

  14. Rodrigues D., Leitao C., Loureiro A., Louro R. 8th International Symposium 2010

    The viscoplastic behaviour of two aluminium alloys (non heat-treatable AA5083-H111 and heat-treatable AA6082-T6) was analysed by performing tensile tests at different temperatures and strain rates and the friction stir weldability of the materials i…

  15. Avettand-Fenoel M.N., Simar A., Shabadi R., Taillard R., de Meester B. 9th International Symposium 2012

    Friction stir processing (FSP) was employed to fabricate oxide dispersion strengthened copper-based composite plates with a graded microstructure and evolving mechanical, thermal, electrical and wear properties along their thickness. Specimens compr…

  16. Yan J.H., Sutton M.A., Reynolds A.P. 5th International Symposium 2004

    The effects of rotation speed, welding speed and Z-axis force on process response variables (power, specific energy, torque, X-axis force) and properties (nugget hardness, strength and ductility, nugget grain size and HAZ hardness) of AA2524-T351 fr…

  17. McLane M.W., Carter P.W. 4th International Symposium 2003

    Forces experienced by the pin and the workpiece during friction stir welding were measured and used to design a friction stir welding machine which would accept a curved workpiece fed through the machine by hand. Forces in three perpendicular direct…

  18. Oiwa N., Ishii Y., Nezaki K., Tsuchiya K. 3rd International Symposium 2001

    Friction stir welding (FSW) was carried out on A-6N01-T5 aluminium alloy of thickness 15 mm in various restraint conditions, and the amount of deformation before and after welding was investigated. Vertical distortion and lateral shrinkage of the we…

  19. Hori H., Makita S., Hino H. 1st International Symposium 1999

    Friction stir welding of aluminium alloy JIS-6N01-T5 (Al, 0.4-0.8%Mg, 0.4-0.9%Si) was investigated for subway [underground railway] rolling stock applications by comparing the welded joint properties with those of MIG and laser welded joints. Sheet …

  20. Hirano S., Okamoto K., Aota K., Inagaki M. 5th International Symposium 2004

    Friction stir welding (FSW) was employed to join ultra fine grained C-Mn steel (0.14%C, 0.2%Si, 1.84%Mn) sheets of 5 mm thickness using a polycrystalline cubic boron nitride tool, and the metallurgical and mechanical properties of the joint were eva…

Loading...