TWI Digital Library

80 results in Symposia Papers
  1. Suda T., Sakamoto Y., Miyamichi T., Sato T. 9th International Symposium 2012

    An investigation is presented into the development of the stationary shoulder self-reacting pin tool (SSSRPT) as a friction stir welding variant and the application of the tool to fabrication of butt joints in sheets (thickness 4 mm) of A6N01 alloys…

  2. Al-Zubaidy B.M., Chen Y.C., Prangnell P. 10th International Symposium 2014

    A refill friction stir spot welding (RFSSW) process with a short welding cycle time was employed to fabricate welded joints in thin gauge AA 6111-T4 aluminium alloy sheets (thickness 0.9 mm) and the mechanical properties of the joints were investiga…

  3. Zhou M.R., Morisada Y., Fujii H. 11th International Symposium 2016

    Flame resistant AZX 612 (Mg, 6%Al, 1%Zn, 2%Ca) magnesium alloy joints were fabricated by asymmetric double sided friction stir welding (FSW) and the influence of tool rotational speed on their microstructure and mechanical properties was investigate…

  4. Kumar A., Wasson A., Fairchild D.P., Macia M.L. 9th International Symposium 2012

    An economic analysis was undertaken to compare the costs of onshore and offshore pipeline construction scenarios for welds made using friction stir welding (FSW) and conventional mechanised MIG/MAG welding. Pipe diameters of 1067 and 305 mm were sel…

  5. De Vuyst T., Madhavan V., Ducoeur B., Simar A., de Meester B., D'Alvise L. 7th International Symposium 2008

    A two-step modelling procedure, consisting of a thermo-fluid model and a thermo-mechanical model, was employed to predict temperature, flow and residual stress fields around the workpiece block, steel backing plate and tool in friction stir welding …

  6. Schmidt H.B., Hattel J.H. 7th International Symposium 2008

    A thermal-pseudo-mechanical model, based on the use of material temperature-dependent yield stress as the driver for heat input, was proposed for heat generation in friction stir welding, and simulation results were compared with experimental temper…

  7. Kawasaki T., Ezumi M. 11th International Symposium 2016

    An overview is presented of the twenty year history and technological developments relating to the application of friction stir welding (FSW) to aluminium alloy railway car body shells. Issues discussed include the history of railway car body shell …

  8. Boldsaikhan E., Bharat J., Logar A., Corwin E., Janes M., Arbegast W. 8th International Symposium 2010

    Quantification approaches applied to phase space data generated from friction stir welding aluminium alloys under varying process conditions are reported. A multi-step, micro-wormhole, non-destructive evaluation phase-spaced, (PS) algorithm that com…

  9. Russell M.J., Shercliff H.R. 1st International Symposium 1999

    A softening model was constructed for friction stir welding (FSW) of 2xxx series aluminium alloys and was combined with previously derived thermal cycle modelling work. A thermal model of energy input and heat conduction was used to calculate therma…

  10. Wu H., Chen Y.C., Prangnell P.B. 10th International Symposium 2014

    Stationary shoulder friction stir welding (SSFSW) and conventional FSW experiments were undertaken on AA 7050-T7651 alloy plates (thickness 6.3 mm) to demonstrate the advantages of SSFSW with respect to surface finish, thermal profile symmetry, HAZ …

  11. Feng X.M., Feng Z.Y., Lv X.W., Wang T. 11th International Symposium 2016

    Defects and their mitigation associated with the fabrication of fluid-cooled aluminium alloy heatsinks for electronic applications are discussed. The heatsink consisted of an aluminium alloy 6063 substrate (310 x 300 mm) with a series of rectangular…

  12. Dickerson T., Shercliff H.R., Schmidt H. 4th International Symposium 2003

    The incorporation of strips of copper foil in friction stir welded aluminium alloy plate was evaluated for flow visualisation without disturbing the welding process. The strips, of 0.1 mm thickness, were placed in various longitudinal and transverse…

  13. Blanchard S., Langrand B., Fabis J., Denquin A. 6th International Symposium 2006

    Arcan tests (pure tensile, pure shear and mixed tensile/shear loads) were performed on parent material (6056-T78 aluminium alloy) and friction stir welded (FSW) specimens for comparison purposes and to assess the capability of strain field measureme…

  14. Fuller C., Mahoney M., Bingel W. 5th International Symposium 2004

    Aluminium alloy fusion welds were modified by friction stir processing (FSP) as a function of FSP location and tool design, and differences between the FSP locations and tools were quantified by microstructure and mechanical property measurements (u…

  15. Bordesoules I., Bigot A., Hantrais C., Odievre T., Laye J. 9th International Symposium 2012

    In relation to the development of "AIRWARE" technology based on Al-Cu-Li alloys for aircraft structural parts, a report is presented into the friction stir welding (FSW) of "AIRWARE" 2050 alloys, mechanical characterisation of welded joints, and ind…

  16. Colligan K.J. 7th International Symposium 2008

    A conceptual model was developed to describe the relationship between process variables and physical properties such as spindle torque, heat generation and workpiece temperature distribution for friction stir welding of aluminium alloys. The materia…

  17. Yoshikawa K. 4th International Symposium 2003

    This paper describes the joining criterion for lap joining of dissimilar metal materials of aluminum and stainless steel by friction stir. A criterion for evaluating the joined state or non-joined state is proposed, which is led by the concept based…

  18. Al-Moussawi M., Smith A., Young A., Faraji M., Cater S. 11th International Symposium 2016

    The CFD (computational fluid dynamics) technique was employed to develop a numerical model of friction stir welding (FSW) of DH36 steel (0.16%C, 1.2%Mn, 0.02%Cr, 0.02%Nb, 0.04%Al, 0.03%Cu) plate (thickness 6 mm) under low and high welding speed cond…

  19. Wang Y.S., Tong J.H., Li C.Q., Luan G.H. 9th International Symposium 2012

    A friction stir welding (FSW) methodology incorporating laser tracking and constant force control technologies was developed in order to fabricate large, thin-walled aircraft floor structures. The material chosen for study comprised sheet specimens …

  20. Smith A.J., Almoussawi M. 12th International Symposium 2018

    An experimental and numerical analysis of the wear of a polycrystalline boron nitride (PCBN) friction stir welding (FSW) tool is overviewed as presentation slides. Topics highlighted include: FSW plunge trials of EH46 shipbuilding steel at a plunge …

Loading...