TWI Digital Library

141 results in Symposia Papers
  1. Mendoza J., Nystrom H., Osikowicz W. 12th International Symposium 2018

    Vertical and angular truss extrusions made from 6082-T6 aluminium alloy (Al, 0.7-0.74%Mg, 1.04-1.14%Si, 0.53-0.54%Mn) were friction stir welded in a half-overlap configuration to fabricate panels for marine applications and their fatigue performance…

  2. Gebhard P., Zaeh M.F. 7th International Symposium 2008

    A method was developed to integrate basic force control functionalities into a CNC milling machine for friction stir welding (FSW) by using a standard CNC controller, optimum control parameters for various FSW conditions were identified and the forc…

  3. Dalkilic S., Biallas G. 6th International Symposium 2006

    Friction stir welding (FSW) experiments were undertaken to investigate the feasibility of joining a metal matrix composite (MMC), comprising an AA 2124 matrix and 25 vol.% SiC particles, to itself and to a monolithic alloy (AA 2024-T3), and the micr…

  4. Lienert T.J., Tang W., Hogeboom J.A., Kvidahl L.G. 4th International Symposium 2003

    Friction stir welding of DH-36 mild steel sheet was evaluated for shipbuilding applications. Butt welds were prepared in sheet of 4.6 mm (0.18 in) thickness using an unthreaded tool (W, 25%Re) rotating at 400 or 500 rpm and travelling at 203 mm/min …

  5. Nakata K., Inoki S., Nagano Y., Hashimoto T., Johgan S., Ushio M. 3rd International Symposium 2001

    The weldability of 2 mm thickness thixomoulded sheets of AZ91D magnesium alloy by friction stir welding (FSW) was studied as a function of tool rotation speed (880-1750 rpm) and specimen travel speed (50-500 mm/min). The composition of the sheet was…

  6. Meyer A. 9th International Symposium 2012

    Friction stir welding (FSW) is discussed in manufacture of a sports car body made largely of aluminium alloy sheet with some components of cast aluminium or extruded aluminium, and the only steel used is the frame for the windscreen. Advantages are …

  7. Uematsu Y., Tokaji K., Murata S. 6th International Symposium 2006

    Fatigue tests were performed using lap-shear specimens of friction stir spot welded Al, 0.8%Mg, 1%Si alloys. Sheet specimens (thickness 2 mm) were subjected to PWHT of solution treatment and/or ageing. Weld zone microstructure was observed by SEM. F…

  8. Cao X., Jahazi M., Mehta R. 6th International Symposium 2006

    The joining of hot rolled aerospace quality AZ31B-H24 magnesium alloy (Mg, 2.5-3.5%Al, 0.7-1.3%Zn, 0.2-1.0%Mn) sheets (thickness 4.95 mm) was investigated using an MTS ISTIR friction stir welding (FSW) machine, the quality of the butt joints produce…

  9. Okamoto K., Doi M., Hirano S., Aota K., Okamura H., Aono Y., Ping T.C. 3rd International Symposium 2001

    The application of friction stir welding (FSW) to the fabrication of copper backing plates of thickness 6 mm was investigated. The welding conditions, FSW machine development, and mechanical and metallurgical properties of friction stir welded joint…

  10. Thompson J. 2nd International Symposium 2000

    The design, construction and use of a purpose-built friction stir welding machine for the welding of 15.9 mm (0.625 in) thickness, 1.88 m (74 in) long aluminium alloy 6061-T6 plate and extruded sections to form the side panels of a laser system is d…

  11. Arruti E., Quintana I., Aldanondo E., Alvarez P., Arregi E. 12th International Symposium 2018

    Dissimilar lap joints between AlSi10MgMn aluminium alloy sheets (thickness 3 mm) and Al-Si coated Usibor 1500 22MnB5 hot stamped boron steel sheets (thickness 1.8 mm) were fabricated by friction stir spot welding (FSSW) under different processing co…

  12. Grimm A., Schulze S., Gobel G., Brenner B., Beyer E., Fussel U. 10th International Symposium 2014

    A review is presented of process development work undertaken with regard to a machine concept assessment and the realisation of a fully 3D-capable 5-axis parallel kinematic friction stir welding machine, a so-called pentapod, suitable for large and …

  13. Livingston J.J., Rodelas J.M., Lippold J.C. 9th International Symposium 2012

    Friction stir processing (FSP) experiments were undertaken to modify the microstructure of Ti-6%Al-4%V parent metal specimens, in both alpha/beta and beta processed conditions, and TIG weld overlays deposited onto Ti, 6%Al, 4%V alloy using matching …

  14. Chen Y.C., Nakata K. 7th International Symposium 2008

    Friction stir lap welding of aluminium alloy to magnesium alloy was investigated, emphasising the tensile strength, fracture location in the joint and microstructure evolution in the weld under different welding heat inputs. Dissimilar joints betwee…

  15. Avila J.A., Ruchert C.O.F.T., Mei P.R., Marinho R.R., Paes M.T.P., Ramirez A.J. 10th International Symposium 2014

    A two-run friction stir welding process was employed to fabricate butt joints in API 5L X80 pipeline steel (0.08%C, 1.86%Mn, 0.16%Cr, 0.01%Ni, 0.18%Mo, 0.03%V, 0.06%Nb) plates (thickness 12 mm) and fracture toughness was determined in the parent met…

  16. Thompson B., Doherty K., Niese C., Eff M., Stotler T., Pramann Z., Seaman J., Spencer R., White P. 9th International Symposium 2012

    With regard to the development of aluminium military vehicles, a report is presented into production level single run friction stir welding (FSW) process parameters for thick plate samples (thickness 12.7-40.6 mm) of 5083, 5059 and 2139 aluminium al…

  17. Minton T., Au J., Bulpett R. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on commercial SPF (superplastic forming) AA 5083-H19 (Al, 4.43%Mg) and AA 2004 (Al, 6.05%Cu) aluminium alloys, and the effects of tool size, geometry and primary process variables on microstructure a…

  18. Smith I.J., Lord D.D.R. 7th International Symposium 2008

    A review is presented of the growth in interest in friction stir welding (FSW) as measured by real industry applications and the distribution of related patent filings by time and geography, and case studies are reported to illustrate commonly occur…

  19. Hoyos E., Escobar S., Guzman J.E. 12th International Symposium 2018

    A friction stir welding (FSW) process map for AA 7075-T6 aluminium alloy (Al, 5.1-6.1%Zn, 2.1-2.9%Mg, 1.2-2%Cu) was determined using combined NDT techniques such as visual inspection, dye penetrant testing, X-ray radiography and ultrasonic testing a…

  20. Martin W., Anderson B., Jones R., Loftus Z. 6th International Symposium 2006

    In relation to weight and cost saving on spaceflight pressure vessels, two friction stir lap welding methods were demonstrated on large-scale thin-gauge hardware and evaluated with respect to tooling and tooling cost reduction, lap joint stiffness a…

Loading...