TWI Digital Library

141 results in Symposia Papers
  1. Bussu G., Irving P.E. 1st International Symposium 1999

    Friction stir welded joints in 2024-T351 Al-Cu-Mg alloy were subjected to fatigue testing to evaluate the suitability of this welding process for aircraft manufacture. Aluminium alloy (Al, 3.8-4.9%Cu, 1.2-1.8%Cu, 0.5%Si, 0.5%Fe, 0.2%Zr) of 6.35 mm (…

  2. Chen Y.C., Nakata K. 7th International Symposium 2008

    Friction stir lap welding of aluminium alloy to magnesium alloy was investigated, emphasising the tensile strength, fracture location in the joint and microstructure evolution in the weld under different welding heat inputs. Dissimilar joints betwee…

  3. Avila J.A., Ruchert C.O.F.T., Mei P.R., Marinho R.R., Paes M.T.P., Ramirez A.J. 10th International Symposium 2014

    A two-run friction stir welding process was employed to fabricate butt joints in API 5L X80 pipeline steel (0.08%C, 1.86%Mn, 0.16%Cr, 0.01%Ni, 0.18%Mo, 0.03%V, 0.06%Nb) plates (thickness 12 mm) and fracture toughness was determined in the parent met…

  4. Thompson B., Doherty K., Niese C., Eff M., Stotler T., Pramann Z., Seaman J., Spencer R., White P. 9th International Symposium 2012

    With regard to the development of aluminium military vehicles, a report is presented into production level single run friction stir welding (FSW) process parameters for thick plate samples (thickness 12.7-40.6 mm) of 5083, 5059 and 2139 aluminium al…

  5. Minton T., Au J., Bulpett R. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on commercial SPF (superplastic forming) AA 5083-H19 (Al, 4.43%Mg) and AA 2004 (Al, 6.05%Cu) aluminium alloys, and the effects of tool size, geometry and primary process variables on microstructure a…

  6. Marie F., Batalla F. 9th International Symposium 2012

    Use of friction stir welding (FSW) to replace mechanical fastening in fabrication of an aircraft component in the ROCT Project (Rib One with Crux and Tees) is described. Design is shown of the part, which was assembled using four butt welds from wro…

  7. Mroczka K., Pietras A. 10th International Symposium 2014

    Dissimilar joints between 2017A-T451 (Al, 4.14%Cu, 0.72%Mg, 0.68%Si) and AlSi9Mg (Al, 8.6%Si, 0.64%Fe, 0.34%Mn, 0.31%Mg) aluminium alloys were fabricated by a friction stir welding process featuring different rates of rotation of the pin and shoulde…

  8. Shtrikman M.M., Kashchuk N.M. 9th International Symposium 2012

    The friction stir disc welding (FSDW) process was developed to facilitate the production of high quality root welds, and the joint formation mechanism and the influence of tool rotation direction on joint properties were investigated. The FSDW set-u…

  9. Ericsson M., Sandstrom R. 5th International Symposium 2004

    An investigation is presented into the fatigue characteristics of friction stir welded (FSW) lap joints made from artificially aged Al alloy 6082 (Al, 0.6-1.2%Mg, 0.7-1.3%Si) using a tool based on the "Triflute" concept with either convex or concave…

  10. Record J.H., Covington J.L., Nelson T.W., Sorensen C.D., Webb B.W. 5th International Symposium 2004

    A 16-run screening design of experiments (DOE) was conducted to analyse the effects of nine factors during friction stir welding on process forces, temperatures and shoulder depth. The factors were spindle speed, feed rate, plunge depth, pin length,…

  11. Ericsson M., Sandstrom R., Hagstrom J. 2nd International Symposium 2000

    The tensile and fatigue strength of friction stir welds were determined for aluminium alloy 6082 in various temper conditions. Plate of 5.8 mm thickness, in both T6 and T4 conditions, was welded using a tool speed of 1000 rev/min and a welding speed…

  12. Hashimoto T., Jyogan S., Nakata K., Kim Y.G., Ushio M. 1st International Symposium 1999

    The effects of friction stir welding process parameters (tool rotation speed and travel speed) on defects and mechanical properties in welds in aluminium alloys were investigated. Microstructural, macrostructural and mechanical properties of the wel…

  13. Nagira T., Wu S., Wu Z., Fujii H. 12th International Symposium 2018

    Friction stir welding (FSW) experiments were undertaken on Cr-containing carbon steels (0.22%C, 0.5%Mn, 0-4%Cr) and the influence of Cr content on joint microstructure and mechanical properties was investigated. FSW was conducted at a tool rotationa…

  14. Mahoney M., Sanderson S., Steel R., Babb J., Maak P., Fleck D. 10th International Symposium 2014

    With regard to the fabrication of closure welds for used fuel containers, a series of experiments was undertaken to demonstrate the feasibility of creating defect-free partial penetration welds by friction stir welding (FSW) in A516 Grade 70 steel (…

  15. Bernath J., Thompson B., Stotler T. 8th International Symposium 2010

    The application of suitable friction stir welding (FSW) tools and procedures to common structural geometries in industry, with emphasis of FSW of hard metals including steel, titanium and nickel based alloys in butt, T-joint, corner joint and circum…

  16. Tsujikawa M., Koizumi S., Oguri T., Oki S., Chung S.W., Higashi K. 6th International Symposium 2006

    Extruded AZ31 (Mg, 3%Al, 1%Zn) alloy plates (thickness 6 mm) were joined by one-run or two-run friction stir welding (FSW) and the microstructure, mechanical properties and residual stress characteristics of the welded joints were investigated. FSW …

  17. Schneider J., Chen P., Nunes A.C. 11th International Symposium 2016

    With regard to the occurrence of residual oxide defects associated with friction stir welding (FSW) of aluminium alloys, an investigation is presented into a possible alternative mechanism for oxide formation within the weld nugget involving enhance…

  18. Cederqvist L. 5th International Symposium 2004

    A method investigated by Sweden for storage of nuclear waste in copper canisters sealed using friction stir welding (where EB welding has been used before) is described. Topics include: Nimonic 105 and Densimet sintered tungsten alloy tool; welding …

  19. Luan G.H., Zhang K., Meng Q., Dong J.H., Wang H.J. 11th International Symposium 2016

    Carbon nanotube reinforced AA 6063 aluminium alloy (Al, 0.65%Mg, 0.34%Si) metal matrix composite (MMC) sheets (thickness 1.8 mm) were joined by friction stir welding (FSW) and experimental studies were undertaken to examine the MMC weldability as we…

  20. Badarinarayan H., Hunt F., Okamoto K. 6th International Symposium 2006

    A numerical and experimental study was undertaken to investigate the mechanism of swing friction stir spot welding (FSSW) and the effects of swing length and weld direction on the joint strength. Coupons were taken from a commercial A6022-T4 alumini…

Loading...