TWI Digital Library

106 results in Symposia Papers
  1. Allehaux D., Petit G., Campagnac M.H., Lapasset G., Denquin A. 4th International Symposium 2003

    An experimental study was carried out to investigate the link between the microstructure and the mechanical and corrosion properties for a friction stir welded aerospace aluminium alloy 7349-T6 (Al, 1.4-2.1%Cu, 1.8-2.7%Mg, 7.5-8.7%Zn) developed for …

  2. Yang Q., Mironov S., Sato Y.S., Okamoto K. 7th International Symposium 2008

    Friction stir spot welding (FSSW) experiments were undertaken on sheet specimens (thickness 1.3 mm) of AZ31 magnesium alloy (Mg, 3%Al, 1%Zn) and the effects of process conditions and workpiece surface condition on the macrostructure, microtexture an…

  3. Fukumoto M., Yasui T., Tsubaki M., Miyagawa K., Miyagawa K. 8th International Symposium 2010

    The material flow of aluminium alloy and steel during dissimilar friction stir spot welding was visualised using zinc tracers and the surface temperature of the flat-tipped tool during stirring was measured by telemetry. Welds were produced in AA505…

  4. Cater S. 10th International Symposium 2014

    Friction stir welding experiments were undertaken on carbon manganese steel plates (thickness 6 mm) in order to map the internal temperature distribution, assess the effects of minimal plate preparation and investigate the microstructures and mechan…

  5. Karvinen H., Nordal D., Vilaca P. 12th International Symposium 2018

    The hybrid friction stir channelling (HFSC) technique was employed to produce, in one action, a channel and a joint between dissimilar thickness overlapping Al plates and dissimilar Al-Cu plates, and the microstructural and geometrical features of t…

  6. Lin P.C., Liao P.S., Su Z.M., Aoh J.N. 10th International Symposium 2014

    Dissimilar joints between 6061-T4 aluminium alloy and S45C steel sheets (thickness 1.6 mm and 1 mm, respectively) were fabricated by the friction stir clinching technique using two types of tools and their mechanical properties and failure modes wer…

  7. Jasthi B.K., Arbegast W.J., Howard S.M. 8th International Symposium 2010

    The microstructure and corrosion properties of welded joints in Inconel 22 (Alloy 22 or NO6022) made by friction stir welding (FSW) were investigated. Bead-on-plate welds were produced in Alloy 22 (59.6%Ni, 13.43%Mo, 0.22%Cr, 3.29%W, 3.17%Fe, 0.84%C…

  8. Gallais C., Denquin A., Pic A., Simar A., Pardoen T., Brechet Y. 5th International Symposium 2004

    Modelling tools were developed to describe the relationships between process parameters, microstructural evolution and mechanical properties of the weld in friction stir welding (FSW). Experiments were conducted using aluminium alloy 6056. Initial t…

  9. Colegrove P.A., Shercliff H.R., Threadgill P.L. 4th International Symposium 2003

    Computational fluid dynamics (CFD) methods were used to model the metal flow in the friction stir welding (FSW) process in order to optimise the pin profile to minimise the traversing force; welding experiments were carried out to validate the findi…

  10. Lienert T.J., Grylls R.J. 1st International Symposium 1999

    The influence of friction stir welding on the microstructure and mechanical properties of aluminium alloy 6061 was investigated. Aluminium alloy 6061-T651 plate of 6.4 mm (0.25 in) thickness was friction stir welded and the joints characterised by o…

  11. Biallas G., Braun R., Dalle Donne C., Staniek G., Kaysser W.A. 1st International Symposium 1999

    The influence of the process parameters on the microstructure, mechanical properties and corrosion of friction stir welded aluminium alloy 2024-T3 was investigated. Sheets of 1.6 and 4 mm thickness were welded using rotational speeds of 800-2400 rpm…

  12. da Silva M., Gougeon P., St-Georges L., Chen X.G. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on butt joints of AA6063 alloys (Al, 0.45-0.9%Mg, 0.2-0.6%Si) and AA6063 matrix reinforced with 6 and 10.5 vol.% B4C, and the effect of particle concentration on welded joint microstructure and micro…

  13. Nagaoka T., Watanabe H., Fukusumi M., Kitamura Y., Mizuno T., Abe G., Morisada Y., Fujii H. 9th International Symposium 2012

    A combination of laser surfacing and friction stir processing (FSP) was employed to modify a cold-worked AISI D2 tool steel (1.5%C, 11%Cr, 0.83%Mo, 0.36%V) with the aim of clarifying the FSP conditions required to obtain a microstructure with unifor…

  14. Qin H.L., Zhang H., Wu H.Q. 10th International Symposium 2014

    Friction stir welding experiments were undertaken on 2195-T8 (Al, 3.99%Cu, 1.09%Li) alloy sheets (thickness 5 mm) and the weldability, microstructure and mechanical properties of the fabricated butt joints were investigated. Welding was performed us…

  15. Chen Z.W., Parningotan D., Li W., Tarrant M. 11th International Symposium 2016

    An experimental investigation was undertaken to examine how tool pin induced material flow and intermetallic growth conditions affect the formation of discontinuity during friction stir lap welding of dissimilar Al-Cu joints. The materials comprised…

  16. Ding R.J., Oelgoetz P.A. 1st International Symposium 1999

    A friction stir welding tool with a variable length probe (suitable for variable thickness joints, repairs and circumferential welding) was developed and evaluated for the welding of aluminium alloy 2195. Tapered sheet, of both increasing and decrea…

  17. Hirata T., Tanaka T., Chung S.W., Takigawa Y., Higashi K. 7th International Symposium 2008

    The deformation behaviour and microstructural evolution of friction stir processed Zn, 22%Al rolled sheet (thickness 3 mm) were compared with those of the corresponding superplastic alloy. Friction stir processing was performed at a rotational speed…

  18. Kostka A., Coelho R.S., Dos Santos J., Pyzalla A.R. 7th International Symposium 2008

    Friction stir welding (FSW) was employed to fabricate a single overlap joint between sheet specimens (thickness 1.5 mm) of an AA 6181-T4 aluminium alloy and ZStE-340 high-strength steel, and weld phase composition, microstructure and mechanical prop…

  19. Yasui T., Ishii T., Tsubaki M., Fukumoto M. 6th International Symposium 2006

    Friction stir welding experiments between AA 6063 aluminium alloy and S45C carbon steel (thickness 6 mm) were performed, and the effects of heat input on the butt joint macrostructure (cavities formed at weld interface), hardness and plastic flow of…

  20. Morisada Y., Fujii H., Nagaoka T., Fukusumi M. 7th International Symposium 2008

    SiC particles, multi-walled carbon nanotubes and C60 fullerene were dispersed in an AZ31 alloy matrix by friction stir processing (FSP) and the microstructure and mechanical properties of the surface composites were investigated. The FSP conditions …

Loading...