TWI Digital Library

104 results in Symposia Papers
  1. Colegrove P.A., Shercliff H.R. 5th International Symposium 2004

    A computational fluid dynamics package, FLUENT, was used to model the viscous material flow during friction stir welding using two- and three-dimensional tool shapes. Two approaches were used to describe the viscosity. The first approach interpolate…

  2. Biallas G., Braun R., Dalle Donne C., Staniek G., Kaysser W.A. 1st International Symposium 1999

    The influence of the process parameters on the microstructure, mechanical properties and corrosion of friction stir welded aluminium alloy 2024-T3 was investigated. Sheets of 1.6 and 4 mm thickness were welded using rotational speeds of 800-2400 rpm…

  3. Huber N., Heerens J., Rao D., dos Santos J.F. 8th International Symposium 2010

    Local stress-strain curves were determined from an array of spherical indents on the cross-section of the joint of a friction stir welded (FSW) high strength aluminium alloy AA 2198 sheet, in order to characterise the mechanical properties of differ…

  4. Miyano Y., Ueji R., Fujii H. 10th International Symposium 2014

    Friction stir butt welding experiments were conducted on S45C medium carbon steel sheets (thickness 1.5 mm) under various conditions and the microstructure and mechanical properties of the welded joints were investigated. Single run butt welding was…

  5. Magnusson L., Kallman L. 2nd International Symposium 2000

    The tensile and bend properties of friction stir welded butt joints in aluminium alloys 2024-T3, 6013-T6 and 7475-T76 were determined, including welds in 2024 and 7475 subjected to PWHT. The ultimate tensile strength, proof stress at 0.2% strain, an…

  6. Jene T., Dobmann G., Wagner G., Eifler D. 7th International Symposium 2008

    In relation to the requirement for automatic inspection of weld quality during the friction stir welding (FSW) process, the "MonStir" process monitoring system was developed to analyse measured process forces and their frequency spectra, and an inve…

  7. Dong J.H., Dong C.L., Meng Q., Luan G.H. 9th International Symposium 2012

    Single run friction stir welding (FSW) experiments were undertaken on plate specimens (thickness 6 mm) of 7A60-T6 aluminium alloys (Al, 8.89%Zn, 2.74%Mg, 2.26%Cu) and the relationship between process parameters, microstructure and mechanical propert…

  8. Nishihara T., Nagasaka Y. 4th International Symposium 2003

    Thermocouples were mounted in a friction stir welding (FSW) tool to measure its temperature during the FSW of aluminium alloy 6061-T6 (Al, 1.0%Mg, 0.61%Si, 0.27%Cu, 0.10%Mn) sheet of 3 mm thickness. Type K thermocouples were mounted at various dista…

  9. Johnson R., dos Santos J.F., Magnasco M. 4th International Symposium 2003

    Friction stir welds in S355 carbon manganese steel plate of 12 mm thickness were characterised by microstructural studies and measurements of mechanical properties. A tungsten-rhenium alloy tool with a pin length of 7.5 mm was used, running at 400 r…

  10. Denquin A., Allehaux D., Campagnac M.H., Lapasset G. 3rd International Symposium 2001

    3rd International Symposium, 27-28 Sep 2001, Poster Session, Paper 13

  11. Kinchen D.G., Li Z.X., Adams G.P. 1st International Symposium 1999

    Friction stir welds were made in Al-Li 2195 aluminium alloy plate, 2195 plate was welded to 2219 aluminium alloy forgings, and the welds were characterised by studies of mechanical properties, microstructure and NDE. Welds were made in plate of 8.1 …

  12. Wynne B.P., Threadgill P.L., Davies P.S., Thomas M.J., Ng B.S. 7th International Symposium 2008

    The principles are presented of stationary shoulder friction stir welding (FSW) with examples of the weld microstructures that can be achieved. Trials were conducted on 6.35 mm plate of Ti-6%Al-4%V titanium alloy, with spindle speed of 400 rpm and t…

  13. Chen Z.W., Cui S. 7th International Symposium 2008

    A series of friction stir welding (FSW) experiments using threaded tool pins and AA5083 (Al, 4.5%Mg, 0.6%Mn) or A356 (Al, 7%Si, 0.3%Mg) workpiece alloys was undertaken in order to understand material flow mode within thread spaces and its influence …

  14. Mahoney M., Sanderson S., Larsen S., Steel R., Feng Z.L., Wasson A., Fairchild D., Packer S., Fleck D. 10th International Symposium 2014

    Two friction stir welding (FSW) procedures, a sacrificial anvil method and a hybrid FSW/arc welding technique, were developed to assure consistent full penetration welds during the construction of offshore and onshore pipelines, respectively. The of…

  15. Yang Q., Mironov S., Sato Y.S., Okamoto K. 7th International Symposium 2008

    Friction stir spot welding (FSSW) experiments were undertaken on sheet specimens (thickness 1.3 mm) of AZ31 magnesium alloy (Mg, 3%Al, 1%Zn) and the effects of process conditions and workpiece surface condition on the macrostructure, microtexture an…

  16. De Vuyst T., Magotte O., Robineau A., Goussain J.C., D'Alvise L. 6th International Symposium 2006

    A finite element model based on a staggered thermo-fluid solution scheme was employed to investigate flow around friction stir welding (FSW) tools, "MORFEO" code simulations were undertaken to predict flow patterns and temperature distribution in th…

  17. Fukumoto M., Yasui T., Tsubaki M., Miyagawa K., Miyagawa K. 8th International Symposium 2010

    The material flow of aluminium alloy and steel during dissimilar friction stir spot welding was visualised using zinc tracers and the surface temperature of the flat-tipped tool during stirring was measured by telemetry. Welds were produced in AA505…

  18. Zhao Y., Wu A.P., Zou G.S., Sato Y.S., Kokawa H. 10th International Symposium 2014

    Friction stir welding (FSW) experiments were undertaken on Invar 36 alloy (Fe,36%Ni) sheet specimens (thickness 3 mm) and the microstructure evolution and recrystallisation mechanism were investigated. Bead-on-plate FSW was performed using a polycry…

  19. Yuan W., Zheng L.L., Badarinarayan H. 11th International Symposium 2016

    Dissimilar joints between wrought 5083 and 6111 aluminium alloys and between AZ31 magnesium alloy and 6111 were fabricated by friction stir welding and their microstructure and mechanical properties were investigated. The starting materials were 508…

  20. Morisada Y., Fujii H., Mizuno T., Abe G., Nagaoka T., Fukusumi M. 8th International Symposium 2010

    The modification of a thermally sprayed cemented layer of WC-CrC-Ni (WC-20%CrC-7%Ni) and WC-Co (WC-12%Co) using friction stir processing (FSP) was investigated. Layers of WC-CrC-Ni and WC-Co were sprayed onto SKD61 substrate (17 mm thickness) by HVO…

Loading...