TWI Digital Library

781 results in Symposia Papers
  1. Zimmer S., Langlois L., Laye J., Goussain J.C., Martin P., Bigot R. 8th International Symposium 2010

    The effect of process parameters during the plunge stage of friction stir welding were examined as part of the development of industrialised friction stir welding equipment. The effects of the tool plunging speed and the rotational speed on the maxi…

  2. Fuller C., Mahoney M., Bingel W. 5th International Symposium 2004

    Aluminium alloy fusion welds were modified by friction stir processing (FSP) as a function of FSP location and tool design, and differences between the FSP locations and tools were quantified by microstructure and mechanical property measurements (u…

  3. Palm F., Hennebohle U., Erofeev V., Karpuchin E., Zaitzev O. 5th International Symposium 2004

    As part of a project to develop a physical-mathematical model and software for thermal simulation of the friction stir welding (FSW) process, an initial version "FricSim2.2" was created and verified, using the software tool "SpotFSW" to convert the …

  4. Dickerson T., Shercliff H.R., Schmidt H. 4th International Symposium 2003

    The incorporation of strips of copper foil in friction stir welded aluminium alloy plate was evaluated for flow visualisation without disturbing the welding process. The strips, of 0.1 mm thickness, were placed in various longitudinal and transverse…

  5. Colligan K., McTernan K., Pickens J.R. 3rd International Symposium 2001

    The design and construction of a prototype fixture and a corner fixture for making 90 degree corner joints in aluminium alloys by friction stir welding (FSW) are described. The requirements for a FSW weld fixture are outlined. The fixtures were test…

  6. Juhas M.C., Viswanathan G.B., Fraser H.L. 2nd International Symposium 2000

    The microstructure of a friction stir weld (of unknown welding parameters) in titanium alloy (Ti, 6%Al, 4%V) is described. The microstructure was studied using optical microscopy, SEM and TEM. The features of the parent material, HAZ and the thermom…

  7. Przydatek J. 1st International Symposium 1999

    Guidance notes devised for Lloyd's Register of Shipping surveyors for use in the quality assurance of friction stir welded aluminium alloys are presented.The notes cover: welding equipment, materials welded, and welding requirements (weld qualificat…

  8. Andersson C.G., Andrews R.E. 1st International Symposium 1999

    The friction stir welding of copper for the production of spent nuclear fuel storage disposal canisters was investigated. Initial trials were conducted on UNS-C10100 plate of 10 mm thickness. The high temperatures required the use of a sintered tung…

  9. Frigaard O., Grong O., Bjorneklett B., Midling O.T. 1st International Symposium 1999

    A process model for friction stir welding (FSW) of Al-Zn-Mg alloys, used to predict HAZ microstructure and hardness, is presented. Numerical solutions (using a finite difference approach) are developed for heat generation and heat flow. Microstructu…

  10. Colligan K.J., Chopra S.K. 5th International Symposium 2004

    A stop-action technique was used to stop tool motion during friction stir welding of aluminium alloys in order to study the interactions between the parent material and welding tool pin in the keyhole. Welds were made in 25 mm thick Al-Cu-Li 2195 pl…

  11. Hinrichs J.F., Smith C.B., Orsini B.F., DeGeorge R.J., Smale B.J., Ruehl P.C. 5th International Symposium 2004

    Following an overview of friction stir spot welding (FSSW) for potential automotive applications (including robotic FSSW in poke welding and C-frame configurations, and pedestal FSSW machines for manual, automatic or robotic use), a FSSW process dev…

  12. Robson J.D., Sullivan A., Shercliff H.R., McShane G. 5th International Symposium 2004

    Variations in microstructure in friction stir welds in AA 7449 (Al, 2.2%Mg, 8.2%Zn, 1.7%Cu, 0.12%Si, 0.15%Fe, 0.2%Mn, 0.05%Cr, 0.25 T plus Zr) in the initially overaged (T7) condition were studied. Isothermal heat treatments were conducted at 350 an…

  13. Yoshikawa K. 4th International Symposium 2003

    This paper describes the joining criterion for lap joining of dissimilar metal materials of aluminum and stainless steel by friction stir. A criterion for evaluating the joined state or non-joined state is proposed, which is led by the concept based…

  14. Dickerson T., Shi Q.Y., Shercliff H.R. 4th International Symposium 2003

    Experimental measurements and thermal modelling were used to determine the transient heat loss into friction stir welding tools and so calculate the welding efficiency. Energy inputs were determined from force and torque measurements made whilst per…

  15. London B., Mahoney M., Bingel W., Calabrese M., Waldron D. 3rd International Symposium 2001

    Experimental methods were developed to track material flow and mixing during the friction stir welding (FSW) process. Experiments were conducted with butt joints of 6.35 mm (0.25 in) thickness 7050-T7451 aluminium alloy plates. The FSW tool was H13 …

  16. Midling O.T., Rorvik G. 1st International Symposium 1999

    Alternative friction stir welding tool shoulder materials to improve welding speed and quality were evaluated. The materials, which were compared with tool steel using a tool designed for exchangeable shoulder inserts, were: nitrided tool steel, Inc…

  17. Fujii H., Kitamura K., Kamai M., Matsumoto T., Nogi K. 7th International Symposium 2008

    An investigation is presented into pore formation and grain growth in aluminium alloys during TIG welding after friction stir welding (FSW), for reasons of repair or fabrication, and into two methods to suppress these problems. The material studied …

  18. Zhuang Q.Y., Zhang H., Wu H.Q., Qin H.L., Sun D.T. 10th International Symposium 2014

    AA 2219-T87 (Al, 5.8-6.8%Cu, 0.2-0.4%Mn) aluminium alloy plates (thickness 8 mm) were joined by friction stir welding (FSW) and their microstructure, mechanical properties and corrosion behaviour were investigated. FSW experiments were conducted usi…

  19. Bordesoules I., Bigot A., Hantrais C., Odievre T., Laye J. 9th International Symposium 2012

    In relation to the development of "AIRWARE" technology based on Al-Cu-Li alloys for aircraft structural parts, a report is presented into the friction stir welding (FSW) of "AIRWARE" 2050 alloys, mechanical characterisation of welded joints, and ind…

  20. Buhl N., Wagner G., Eifler D., Gutensohn 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on commercially pure titanium and Ti, 6%Al, 4%V alloy sheets (thickness 1.2 and 1.25 mm, respectively), the microstructure of the weldments was examined and the wear mechanisms of the welding t…

Loading...