TWI Digital Library

815 results in Symposia Papers
  1. Shtrikman M.M., Kashchuk N.M. 9th International Symposium 2012

    The friction stir disc welding (FSDW) process was developed to facilitate the production of high quality root welds, and the joint formation mechanism and the influence of tool rotation direction on joint properties were investigated. The FSDW set-u…

  2. Chung Y.D., Fujii H. 8th International Symposium 2010

    The influence of tool and plate positions on the friction stir welding of F82H ferritic/martensitic steel (0.1%C, 8%Cr, 2%W, 0.2%V, 0.04%Ta) and austenitic stainless steels 304 and 316 was investigated. Stainless steel compositions were: 304 (0.08%C…

  3. Russell M.J., Nunn M.E., Martin J. 7th International Symposium 2008

    A stationary shoulder friction stir welding (SSFSW) technique was developed for the joining of high temperature, low conductivity materials, and experimental results were obtained for butt and lap welds in Ti-6%Al-4%V alloys produced using 1D and 2D…

  4. Smith I.J., Lord D.D.R. 7th International Symposium 2008

    A review is presented of the growth in interest in friction stir welding (FSW) as measured by real industry applications and the distribution of related patent filings by time and geography, and case studies are reported to illustrate commonly occur…

  5. Gonzalez-Rodriguez A.A., Panoutsos G., Sinclair K., Mahfouf M., Beamish K. 9th International Symposium 2012

    Neural-fuzzy modelling techniques were employed to develop a transparent model-based approach that creates linguistic indices directly from spectral-temporal FSW (friction stir welding) data in order to analyse the relationship between process param…

  6. Shukla A.K., Baeslack W.A. 6th International Symposium 2006

    2024-T3 aluminium alloy (Al, 4.4%Cu, 1.5%Mg) thin sheets (thickness 1 mm) were joined by friction stir welding (FSW), and the effect of process parameters (tool rotation speed and traverse rate) on the microstructure and mechanical properties of the…

  7. Ahmed M.M.Z., Wynne B.P., Rainforth W.M., Threadgill P.L. 7th International Symposium 2008

    A high force, multi-axis friction stir welding (FSW) machine was employed to perform one-run welding experiments on thick plates (thickness 75 mm) of AA 6082-T6 alloys, and the hardness, microstructure and crystallographic texture of the joints were…

  8. Zhao H.X., Li J.Z., Dong C.L., Luan G.H. 10th International Symposium 2014

    Curved overlap joints of a 7B04 aluminium alloy were fabricated using the "RoboStir" robotic friction stir welding system and their microstructure and mechanical properties were investigated. The experimental set-up incorporated an ABB IRB7600 robot…

  9. Grimm A., Goebel G., Beyer E. 9th International Symposium 2012

    A methodology to facilitate cost-effective friction stir welding (FSW) of large and complex 3D structures is presented based on a parallel kinematic machine concept called Pentapod, and welding trial results for spherical structures and dissimilar m…

  10. Fukumoto M., Yasui T., Shimoda Y., Tsubaki M., Shinoda T. 5th International Symposium 2004

    Welding trials are reported to demonstrate joint formation between S45C mild steel and aluminium alloy 6063 using a friction stir diffusion process. Welding experiments were undertaken using a machining centre with a cemented carbide rotating tool, …

  11. De Vuyst T., D'Alvise L., Simar A., de Meester B., Pierret S. 5th International Symposium 2004

    A direct modelling approach ("SAMCEF" software finite element simulation) coupled with an inverse model, based on genetic algorithm optimisation (MAX software), was applied to the friction stir welding (FSW) process for two aluminium alloys (6005A-T…

  12. Desrayaud C., Heurtier P., Allehaux D., Montheillet F. 5th International Symposium 2004

    Thermomechanical and microstructural modelling were performed for the friction stir welding process, simulating the thermal diffusion during and after welding (in the cooling stage), and comparing the results with experimental data obtained for fric…

  13. Sato Y.S., Kokawa H., Enomoto M., Jogan S., Hashimoto T. 3rd International Symposium 2001

    The relationship between microstructure and hardness was investigated in friction stir welded aluminium alloy 6063-T5. The alloy thickness was 6 mm. Hardness profiles were measured across the stir zone. The microstructure of the as-welded and postwe…

  14. Engelhard G., Hillers T., Pellkofer D. 3rd International Symposium 2001

    The development of orbital friction stir welding (FSW) technology for joining aluminium pipes for gas insulated power transmission lines (GIL) is described. The equipment is outlined: hydraulic unit, control panel, FSW head with steel wire rope and …

  15. Liu H.J., Fujii H., Nogi K. 5th International Symposium 2004

    Two types of WC-Co hard alloy tools (threaded and smooth) were used to friction stir weld an AC4A aluminium matrix composite (Al, 9%Si reinforced with 30 vol.% SiC particles) and the wear behaviour of the tools was investigated. Samples were butt we…

  16. Liu H.J., Fujii H., Maeda M., Nogi K. 4th International Symposium 2003

    Tensile testing was used to characterise and compare the fracture locations and their influencing factors for a number of friction stir welded aluminium materials (AA-1050, AA-2017, AA-6061). Friction stir welding was carried out on sheets of thickn…

  17. Lienert T.J., Stellwag W.L., Lehman L.R. 4th International Symposium 2003

    A combined analytical and experimental study was carried out to determine power, heat input, tool shoulder temperature and process efficiency for the FSW of aluminium alloys, carbon steels and titanium alloys and to compare heat input with that for …

  18. Matsumoto K., Sasabe S. 3rd International Symposium 2001

    Friction stir welding (FSW) was used to form lap joints in two aluminium alloys: A5182 without heat treatment and AlMg0.5Si1 sheet in T4 condition. Sheet thicknesses of 1 and 2 mm were used. The effects of tool rotation direction were assessed. The …

  19. Cederqvist L., Reynolds A.P. 2nd International Symposium 2000

    Lap joints between 2 mm aluminium alloy sheet in 2024-T3 (Al, 4.4%Cu, 1.5%Mg, 0.6%Mn) and 7075-T6 (Al, 1.6%Cu, 2.5%Mg, 0.23%Cr, 5.6%Zn) were prepared and evaluated. The welds were produced using a range of welding and tool speeds, with a non-threade…

  20. Mochizuki N., Takasugi T., Kaneno Y., Oki S., Hirata T. 9th International Symposium 2012

    Ni3Al/Ni3V dual two-phase intermetallic alloys, incorporating Ta and Re additions, with enhanced high-temperature strength and hardness, were developed for friction stir welding tool applications and applied to fabricate butt welds in SUS 430 steel …

Loading...