TWI Digital Library

815 results in Symposia Papers
  1. Vieltorf F., Eck L., Bidlingmaier F., Sigl M.E., Zens A., Zaeh M.F. 13th International Symposium 2024

    Friction stir welding (FSW) is a solid-state welding process, particularly suitable for aluminum alloys. The process allows the production of welds with a high seam strength and low distortion. Despite these benefits, irregularities can occur during…

  2. Nakazawa T., Tanaka K., Sakairi K., Sato Y.S., Kokawa H., Omori T., Ishida K., Hirano S. 11th International Symposium 2016

    An investigation was undertaken into the development and wear performance of friction stir welding (FSW) tools made from precipitation strengthened Ir-containing nickel-based superalloys (Ni, 25%Ir, 14%W, 4%Al) during FSW of Ti, 6%Al, 4%V alloys. Th…

  3. Schmidt H. 9th International Symposium 2012

    A report is presented into the challenges faced when developing thermal, thermomechanical and flow models of the friction stir welding process, such as the evolution of predictive models, a method to find the correct contact state variable, and the …

  4. Sorger G., Vilaca P., Santos T.G. 11th International Symposium 2016

    A control concept for friction stir welding (FSW) of structural steels was developed based on a closed loop architecture that limits the heat input during the welding process according to the continuously monitored value of the magnetic permeability…

  5. Ratanathavorn W., Melander A., Magnusson H. 10th International Symposium 2014

    Thermodynamic modelling and experimental measurements were employed to investigate the influence of intermetallic compound formation on the shear strength of dissimilar joints between an aluminium alloy and ultra-high strength steel fabricated by fr…

  6. Widener C.A., Talia J.E., Tweedy B.M., Burford D.A. 6th International Symposium 2006

    A high rotational speed friction stir welding (FSW) procedure based on the use of a fixed shoulder tool was developed to facilitate the production of strong metallurgical joints at comparatively low process forces, and microstructural observations a…

  7. Bozzi S., Etter A.L., Baudin T., Robineau A., Goussain J.C. 6th International Symposium 2006

    To understand the influence of dwell time in friction stir welding (FSW) and thus to optimise its value, spot welds were produced between superposed sheets of 6008 aluminium alloy and industrial steel (thickness 2.5 and 2 mm, respectively), and thei…

  8. Gesto D., Ferreira-Barragans S., Rey P., Fernandez R., Gonzalez-Doncel G. 8th International Symposium 2010

    The effects of friction stir welding (FSW) on the microstructure, hardness, residual stress state and grain distribution of 2124 Al-SiC composite alloy were investigated. The composite was of AMC225xe aerospace AW2124 alloy reinforced with 25% SiC p…

  9. da Silva M., Gougeon P., St-Georges L., Chen X.G. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on butt joints of AA6063 alloys (Al, 0.45-0.9%Mg, 0.2-0.6%Si) and AA6063 matrix reinforced with 6 and 10.5 vol.% B4C, and the effect of particle concentration on welded joint microstructure and micro…

  10. Fonda R.W., Bingert J.F., Colligan K.J. 5th International Symposium 2004

    The microstructure, crystallographic texture and grain distribution were determined in a transverse cross section of a friction stir weld and in a plan-view section through the embedded friction stir welding (FSW) tool. The weld was obtained by FSW …

  11. Pao P.S., Lee E., Feng C.R., Jones H.N., Moon D.W. 4th International Symposium 2003

    The microstructure, mechanical properties and fatigue behaviour of friction stir welded (FSW) and MIG welded butt joints in aluminium alloy 2519-T87 (Al, 5.3-6.4%Cu, 0.1-0.5%Mn, 0.02-0.1%Ti) plate of 25.4 mm thickness were compared. Friction stir we…

  12. Posada M., DeLoach J., Reynolds A.P., Fonda R., Halpin J. 4th International Symposium 2003

    The distortion, mechanical properties and microstructure of friction stir, submerged arc and GMA welds in HSLA-65 steel (0.09%C, 1.32-1.39%Mn, 0.01-0.06%Ni, 0.041-0.067%V, 0.03-0.035%Nb) and DH-36 steel (0.18%C, 0.90-1.60%Mn, 0.25%Cr, 0.40%Ni, 0.08%…

  13. Christner B., Hansen M., Skinner M., Sylva G. 4th International Symposium 2003

    A description is presented on the friction stir welding (FSW) equipment developed for the joining of thin gauge complex-contour aluminium structures for the construction of the Eclipse 500 twin-engine jet aircraft. The design and capabilities of the…

  14. Awang M., Ismail A., Zaman M.A.K. 10th International Symposium 2014

    The swept frequency friction stir spot welding technique was employed to fabricate lap joints in 6061 aluminium alloy workpieces and the influence of process parameters on mechanical properties was investigated. Welding experiments were conducted us…

  15. Smith C.B., Schroeder K., Fehrenbacher A. 9th International Symposium 2012

    The details and methodology of an automatic path planning system for friction stir processing (FSP) of castings are presented, incorporating the means by which operator input is minimised, the limitations and challenges of the automatic programming …

  16. Stubblefield G.G., Fraser K.A., Phillips B.J., Jordon J.B., Allison P.G. 12th International Symposium 2018

    With regard to the development of additive friction stir deposition (or MELD) as an additive manufacturing process, a mesh-free coupled thermomechanical approach was employed to model MELD by invoking smoothed particle hydrodynamics to discretise th…

  17. Zhao Y., Wu A.P., Zou G.S., Sato Y.S., Kokawa H. 10th International Symposium 2014

    Friction stir welding (FSW) experiments were undertaken on Invar 36 alloy (Fe,36%Ni) sheet specimens (thickness 3 mm) and the microstructure evolution and recrystallisation mechanism were investigated. Bead-on-plate FSW was performed using a polycry…

  18. Yuan W., Zheng L.L., Badarinarayan H. 11th International Symposium 2016

    Dissimilar joints between wrought 5083 and 6111 aluminium alloys and between AZ31 magnesium alloy and 6111 were fabricated by friction stir welding and their microstructure and mechanical properties were investigated. The starting materials were 508…

  19. Su H., Wu C.S. 10th International Symposium 2014

    A 3D fully coupled computational fluid dynamics model was established to investigate the heat generation and material flow during friction stir welding, and the measured tool torque and axial force were used to characterise the contact conditions (f…

  20. Rodriguez Fernandez J., Ramirez A.J. 9th International Symposium 2012

    Dissimilar lap joints between ASTM A36 low carbon steel and Inconel 625 (Ni, 21.4%Cr, 9.65%Mo, 3.2%Nb, 2.6%Fe) were fabricated by friction stir welding (FSW) and the effects of process parameters on microstructure and hardness were investigated. FSW…

Loading...