TWI Digital Library

781 results in Symposia Papers
  1. Loftus Z., Venable R., Adams G.P. 1st International Symposium 1999

    Control equipment for the friction stir welding process was developed and evaluated for the production of a 8.4 m (27.5 ft) diameter, 0.32 in (8.13 mm) wall thickness 2195-T8 aluminium alloy space vehicle external fuel tank. The use of a computer-ba…

  2. Chao Y.J., Qi X.H. 1st International Symposium 1999

    Finite element analysis was used to model the friction stir welding process in 6061-T6 aluminium alloy plate, to predict temperature, residual stress and distortion. Temperature distributions in the workpiece were determined as a function of time, c…

  3. Fuller C., Mahoney M., Bingel W. 5th International Symposium 2004

    Aluminium alloy fusion welds were modified by friction stir processing (FSP) as a function of FSP location and tool design, and differences between the FSP locations and tools were quantified by microstructure and mechanical property measurements (u…

  4. Palm F., Hennebohle U., Erofeev V., Karpuchin E., Zaitzev O. 5th International Symposium 2004

    As part of a project to develop a physical-mathematical model and software for thermal simulation of the friction stir welding (FSW) process, an initial version "FricSim2.2" was created and verified, using the software tool "SpotFSW" to convert the …

  5. Dickerson T., Shercliff H.R., Schmidt H. 4th International Symposium 2003

    The incorporation of strips of copper foil in friction stir welded aluminium alloy plate was evaluated for flow visualisation without disturbing the welding process. The strips, of 0.1 mm thickness, were placed in various longitudinal and transverse…

  6. Colligan K., McTernan K., Pickens J.R. 3rd International Symposium 2001

    The design and construction of a prototype fixture and a corner fixture for making 90 degree corner joints in aluminium alloys by friction stir welding (FSW) are described. The requirements for a FSW weld fixture are outlined. The fixtures were test…

  7. Juhas M.C., Viswanathan G.B., Fraser H.L. 2nd International Symposium 2000

    The microstructure of a friction stir weld (of unknown welding parameters) in titanium alloy (Ti, 6%Al, 4%V) is described. The microstructure was studied using optical microscopy, SEM and TEM. The features of the parent material, HAZ and the thermom…

  8. Przydatek J. 1st International Symposium 1999

    Guidance notes devised for Lloyd's Register of Shipping surveyors for use in the quality assurance of friction stir welded aluminium alloys are presented.The notes cover: welding equipment, materials welded, and welding requirements (weld qualificat…

  9. Andersson C.G., Andrews R.E. 1st International Symposium 1999

    The friction stir welding of copper for the production of spent nuclear fuel storage disposal canisters was investigated. Initial trials were conducted on UNS-C10100 plate of 10 mm thickness. The high temperatures required the use of a sintered tung…

  10. Frigaard O., Grong O., Bjorneklett B., Midling O.T. 1st International Symposium 1999

    A process model for friction stir welding (FSW) of Al-Zn-Mg alloys, used to predict HAZ microstructure and hardness, is presented. Numerical solutions (using a finite difference approach) are developed for heat generation and heat flow. Microstructu…

  11. Shen J., Wen L.B., Li Y. 10th International Symposium 2014

    Friction stir spot welding (FSSW) was employed to fabricate lap joints in hot extruded AZ31 magnesium alloy sheets (thickness 2 mm), and the effect of introducing nanostructured SiC particles (mean size 40 nm) on the microstructure and mechanical pr…

  12. Boldsaikhan E., Bharat J., Logar A., Corwin E., Janes M., Arbegast W. 8th International Symposium 2010

    Quantification approaches applied to phase space data generated from friction stir welding aluminium alloys under varying process conditions are reported. A multi-step, micro-wormhole, non-destructive evaluation phase-spaced, (PS) algorithm that com…

  13. St-Georges L., Kiss L.I., Dassylva-Raymond V. 7th International Symposium 2008

    Numerical simulations and experimental tests were undertaken to visualise material flow and to study the effect of the flow field on the mixing mechanism and particle break-up in friction stir welding of metal matrix composites. A 3D thermo-fluid mo…

  14. Meyer A. 9th International Symposium 2012

    Friction stir welding (FSW) is discussed in manufacture of a sports car body made largely of aluminium alloy sheet with some components of cast aluminium or extruded aluminium, and the only steel used is the frame for the windscreen. Advantages are …

  15. Lamarre A. 6th International Symposium 2006

    Nondestructive testing of friction stir welds is discussed. The ultrasonic testing of friction stir welded joints, advantages of phased array testing and test applications are presented briefly. The eddy current array testing technique is illustrate…

  16. Uematsu Y., Tokaji K., Murata S. 6th International Symposium 2006

    Fatigue tests were performed using lap-shear specimens of friction stir spot welded Al, 0.8%Mg, 1%Si alloys. Sheet specimens (thickness 2 mm) were subjected to PWHT of solution treatment and/or ageing. Weld zone microstructure was observed by SEM. F…

  17. Cao X., Jahazi M., Mehta R. 6th International Symposium 2006

    The joining of hot rolled aerospace quality AZ31B-H24 magnesium alloy (Mg, 2.5-3.5%Al, 0.7-1.3%Zn, 0.2-1.0%Mn) sheets (thickness 4.95 mm) was investigated using an MTS ISTIR friction stir welding (FSW) machine, the quality of the butt joints produce…

  18. Nelson T.W., Sorensen C.D., Steel R.J., Packer S.M., Mahoney M.W. 6th International Symposium 2006

    A brief review is presented of the state of development of polycrystalline cubic boron nitride (PCBN) tool materials for friction stir welding (FSW) of high-temperature materials (high alloy steels and Ni based alloys) with respect to weld penetrati…

  19. Mahoney M., Fuller C., DeWald A., Hill M. 6th International Symposium 2006

    Multirun friction stir processing (FSP) (12 mm depth over large surface area) was performed on NiAl bronze (Cu, 9.1%Al, 4.4%Ni, 3.9%Fe) thick plates (thickness 40 mm) using a rectangular spiral-out raster path, and longitudinal residual stresses wer…

  20. Kawasaki T., Ezumi M. 11th International Symposium 2016

    An overview is presented of the twenty year history and technological developments relating to the application of friction stir welding (FSW) to aluminium alloy railway car body shells. Issues discussed include the history of railway car body shell …

Loading...