TWI

781 results in Symposia Papers
  1. Li W.Y., Fu T., dos Santos J.F. 10th International Symposium 2014

    Welded joints were fabricated in AZ31 magnesium alloy (Mg, 3.01%Al, 0.9%Zn, 0.5%Mn) sheets (thickness 2 mm) by bobbin tool friction stir welding (BTFSW) and the influence of process parameters (rotational and welding speeds) on their microstructure …

  2. Chen Y., Farid H., Prangnell P. 8th International Symposium 2010

    The feasibility of short-cycle friction stir spot welding for joining thin sheet aluminium alloys and steels, both galvanised and ungalvanised, was evaluated. Welds were made between 6111-T4 AlMgSi alloy (Al, 0.75%Cu, 0.25%Fe, 0.75%Mg, 0.2%Mn, 0.69%…

  3. Pietras A., Miara D., Mroczka K., Bogucki R. 8th International Symposium 2010

    The results of quality assessments, based on visual examination, mechanical testing, analysis of weld structures and hardness testing, of both similar and dissimilar friction stir welded (FSW) joints of aluminium casting alloys EN AC-42100, EN AC-43…

  4. Dialami N., Chiumenti M., Cervera M., Agelet de Saracibar A. 9th International Symposium 2012

    A fully coupled thermomechanical formulation was proposed for the numerical modelling of friction stir welding (FSW) to facilitate the efficient simulation of different types of material flows and accurate computation of the resulting thermomechanic…

  5. Wu C.S., Liu X.C. 10th International Symposium 2014

    With regard to the capability of ultrasonic vibration enhanced friction stir welding (UVeFSW) to improve weld formation quality as well as the microstructure and mechanical properties of the welded joints, experiments were undertaken to clarify the …

  6. Marie F., Allehaux D. 6th International Symposium 2006

    The friction stir welding (FSW) process was determined for stiffener to skin lap joints of different aluminium alloys (similar 2024 T3, similar 2139 T3 and T8, dissimilar PA 765 T79 extrusion on 2139 T8 skin) and FSW procedures with retractable pin …

  7. Barnes J.E., McMichael J., Reynolds A. 6th International Symposium 2006

    Square butt welds of AA 7075-T6 sheet (thickness 1.3 or 3.2 mm) to AA 7075-T6 extrusions were fabricated by friction stir welding (FSW) procedures incorporating the controlled introduction of defects, and the impact of the defects on joint mechanica…

  8. Jones R.E., Loftus Z.S. 6th International Symposium 2006

    To assess the feasibility of friction stir welding of Ti-6Al-4V alloy (thickness 5 mm), appropriate pin tool material and processing parameters were determined, thermal and environmental management systems were tested, and both A- and B-basis design…

  9. Crawford R., Bloodworth T., Cook G.E., Strauss A.M., Hartman D.A. 6th International Symposium 2006

    Two 3D numerical simulation models were employed to investigate the relationship between forces and torques during high-speed friction stir welding (FSW) with respect to mechanistic defect development owing to process parameter variations, and the t…

  10. Seo N., Hori H., Hino H. 9th International Symposium 2012

    A friction stir welding (FSW) methodology, incorporating Taguchi quality engineering to optimise process parameters, was developed to fabricate a cold plate consisting of copper pipe embedded in the machined groove of a 6061 aluminium alloy base pla…

  11. Ross K. 10th International Symposium 2014

    An investigation is presented into the use of temperature control in two friction stir welding (FSW) research projects: to understand the effect of backing plate conductivity on process parameters and to study the influence of active FSW tool coolin…

  12. Savolainen K., Saukkonen T., Mononen J., Hanninen H. 7th International Symposium 2008

    In relation to the development of corrosion barrier capsules for spent nuclear fuel disposal, friction stir welding experiments were conducted on oxygen-free copper plate specimens (thickness 20 mm) using different joint preparation, shielding gas a…

  13. Kostka A., Coelho R.S., Dos Santos J., Pyzalla A.R. 7th International Symposium 2008

    Friction stir welding (FSW) was employed to fabricate a single overlap joint between sheet specimens (thickness 1.5 mm) of an AA 6181-T4 aluminium alloy and ZStE-340 high-strength steel, and weld phase composition, microstructure and mechanical prop…

  14. Hirata T., Tanaka T., Chung S.W., Takigawa Y., Higashi K. 7th International Symposium 2008

    The deformation behaviour and microstructural evolution of friction stir processed Zn, 22%Al rolled sheet (thickness 3 mm) were compared with those of the corresponding superplastic alloy. Friction stir processing was performed at a rotational speed…

  15. Tweedy B.M., Widener C.A., Jurak S.F., Burford D.A. 7th International Symposium 2008

    Following a description of the swept FSW spot welding process, experimental work on welding conditions is presented. A design of experiments (DOE) approach was employed to examine the effect of process parameters on unguided lap shear tensile streng…

  16. Li J.Y., Zhou J.M., Guo Y.W. 11th International Symposium 2016

    With regard to the occurrence of coarse alpha-Al dendrites, eutectic phase, shrinkage porosity and other defects in cast aluminium alloys, an investigation was undertaken into the influence of different combinations of friction stir processing (FSP)…

  17. Evans W.T., Jarrell A., Strauss A.M., Cook G.E. 12th International Symposium 2018

    With regard to the development of friction stir shaping as a modified friction stir welding (FSW) process to maximise material flow within the weld zone and redistribute it into new shapes or features outside of or on top of the weld zone, an invest…

  18. Gerken J.A., Gratzel M., Bergmann J.P. 12th International Symposium 2018

    In order to study the relationship between material flow and the development of highly variant process forces during friction stir welding (FSW), a high sampling rate triaxial force measurement device and a high speed camera were employed to monitor…

  19. Sun Y.F., Morisada Y., Fujii H., Tsuji N. 11th International Symposium 2016

    6061-T6 aluminium alloy (Al, 0.96%Mg, 0.59%Si) sheets (thickness 1 mm) were joined by friction stir spot welding (FSSW) under low rotational speed conditions and the microstructure and mechanical properties of the welded joints were investigated. FS…

  20. de Backer J., Cederqvist L., Soron M. 9th International Symposium 2012

    Lap joints were fabricated in AA 7075-T6 aluminium alloy sheets (thickness 2 mm) using an ESAB "Rosio" friction stir welding (FSW) robot and the effect tool of side-tilt angle on welded joint tensile strength was investigated. A "CounterStir" FSW to…

Loading...