TWI Digital Library

781 results in Symposia Papers
  1. Zhou M.R., Morisada Y., Fujii H. 11th International Symposium 2016

    Flame resistant AZX 612 (Mg, 6%Al, 1%Zn, 2%Ca) magnesium alloy joints were fabricated by asymmetric double sided friction stir welding (FSW) and the influence of tool rotational speed on their microstructure and mechanical properties was investigate…

  2. Li W.Y., Fu T., dos Santos J.F. 10th International Symposium 2014

    Welded joints were fabricated in AZ31 magnesium alloy (Mg, 3.01%Al, 0.9%Zn, 0.5%Mn) sheets (thickness 2 mm) by bobbin tool friction stir welding (BTFSW) and the influence of process parameters (rotational and welding speeds) on their microstructure …

  3. Chen Y., Farid H., Prangnell P. 8th International Symposium 2010

    The feasibility of short-cycle friction stir spot welding for joining thin sheet aluminium alloys and steels, both galvanised and ungalvanised, was evaluated. Welds were made between 6111-T4 AlMgSi alloy (Al, 0.75%Cu, 0.25%Fe, 0.75%Mg, 0.2%Mn, 0.69%…

  4. Pietras A., Miara D., Mroczka K., Bogucki R. 8th International Symposium 2010

    The results of quality assessments, based on visual examination, mechanical testing, analysis of weld structures and hardness testing, of both similar and dissimilar friction stir welded (FSW) joints of aluminium casting alloys EN AC-42100, EN AC-43…

  5. Dialami N., Chiumenti M., Cervera M., Agelet de Saracibar A. 9th International Symposium 2012

    A fully coupled thermomechanical formulation was proposed for the numerical modelling of friction stir welding (FSW) to facilitate the efficient simulation of different types of material flows and accurate computation of the resulting thermomechanic…

  6. Wu C.S., Liu X.C. 10th International Symposium 2014

    With regard to the capability of ultrasonic vibration enhanced friction stir welding (UVeFSW) to improve weld formation quality as well as the microstructure and mechanical properties of the welded joints, experiments were undertaken to clarify the …

  7. Marie F., Allehaux D. 6th International Symposium 2006

    The friction stir welding (FSW) process was determined for stiffener to skin lap joints of different aluminium alloys (similar 2024 T3, similar 2139 T3 and T8, dissimilar PA 765 T79 extrusion on 2139 T8 skin) and FSW procedures with retractable pin …

  8. Barnes J.E., McMichael J., Reynolds A. 6th International Symposium 2006

    Square butt welds of AA 7075-T6 sheet (thickness 1.3 or 3.2 mm) to AA 7075-T6 extrusions were fabricated by friction stir welding (FSW) procedures incorporating the controlled introduction of defects, and the impact of the defects on joint mechanica…

  9. Jones R.E., Loftus Z.S. 6th International Symposium 2006

    To assess the feasibility of friction stir welding of Ti-6Al-4V alloy (thickness 5 mm), appropriate pin tool material and processing parameters were determined, thermal and environmental management systems were tested, and both A- and B-basis design…

  10. Crawford R., Bloodworth T., Cook G.E., Strauss A.M., Hartman D.A. 6th International Symposium 2006

    Two 3D numerical simulation models were employed to investigate the relationship between forces and torques during high-speed friction stir welding (FSW) with respect to mechanistic defect development owing to process parameter variations, and the t…

  11. Seo N., Hori H., Hino H. 9th International Symposium 2012

    A friction stir welding (FSW) methodology, incorporating Taguchi quality engineering to optimise process parameters, was developed to fabricate a cold plate consisting of copper pipe embedded in the machined groove of a 6061 aluminium alloy base pla…

  12. Ross K. 10th International Symposium 2014

    An investigation is presented into the use of temperature control in two friction stir welding (FSW) research projects: to understand the effect of backing plate conductivity on process parameters and to study the influence of active FSW tool coolin…

  13. Savolainen K., Saukkonen T., Mononen J., Hanninen H. 7th International Symposium 2008

    In relation to the development of corrosion barrier capsules for spent nuclear fuel disposal, friction stir welding experiments were conducted on oxygen-free copper plate specimens (thickness 20 mm) using different joint preparation, shielding gas a…

  14. Leonard A.J., Lockyer S.A. 4th International Symposium 2003

    An experimental study was carried out to characterise the types of defect which may occur in friction stir welding (FSW) when operating outside the standard processing window and to determine the causes of these defects. Friction stir welds were mad…

  15. Lohwasser D. 4th International Symposium 2003

    Results are presented from tests carried out to determine the mechanical and corrosion properties of friction stir welds in sheets of thickness 4 mm of two aerospace aluminium alloys AA-6056 and AA-6013. The specimens included alloys in the T6 condi…

  16. Lohwasser D. 3rd International Symposium 2001

    The Welding of Airframes by Friction Stir (WAFS) project was implemented to increase the adoption of friction stir welding (FSW) for welding airframes in the aerospace industry. The partners in WAFS include all the main airframe manufacturers in Eur…

  17. Lohwasser D. 2nd International Symposium 2000

    The use of friction stir welding in aircraft manufacture, particularly the Airbus, both as an alternative to riveting and for the production of tailored blanks, is discussed. Potential benefits include cost and weight reduction. The European aircraf…

  18. Kallee S.W., Mistry A. 1st International Symposium 1999

    Friction stir welding developments, equipment, and applications for the joining of aluminium alloys, particularly for automotive applications, are reviewed. Body in white automotive applications include aluminium alloy tailor welded blanks and the m…

  19. Lumsden J., Mahoney M.W., Pollock G., Waldron D., Guinasso A. 1st International Symposium 1999

    Stress corrosion cracking in friction stir welded aluminium alloy joints was investigated using two alternative techniques. Aluminium alloy 7050-T7541 (Al, 5.7-6.7%Zn, 2.0-2.6%Cu, 1.9-2.6%Mg, 0.15%Fe, 0.12%Si) plate of 6.35 mm (0.25 in) thickness wa…

  20. Perinet R., Goussain J.C., Da Costa B. 5th International Symposium 2004

    The feasibility of friction stir welding (FSW) for welding aluminium alloy 7020, used for the construction of light armoured fighting vehicles, was investigated and compared with MIG welding. Two joint configurations were tested: butt welding in 100…

Loading...