TWI Digital Library

815 results in Symposia Papers
  1. Schmidt H. 11th International Symposium 2016

    The material point method based on NairnMPM software was employed to formulate a 2D model of elastoplastic material flow around a friction stir welding (FSW) tool probe and to examine 2D elastoplastic deformation and the frictional interaction at th…

  2. Hilgert J., Schmidt H., dos Santos J.F., Huber N. 8th International Symposium 2010

    A thermal numerical 3D model to predict temperature and machine torque values for bobbin tool friction stir welding (FSW) is presented. The model includes a 3D representation of the work piece, clamping and bobbin tool. The heat transported by the t…

  3. Manogaran A.P., Racineux G., Hascoet J.Y. 9th International Symposium 2012

    Incorporation of friction stir welding (FSW) in a parallel kinematics machine (PKM) 5-axis machine was undertaken with the intelligent computer aided manufacturing (ICAM) approach to optimise process parameters and tool paths by using available CNC …

  4. Leitao C., Andrade D., Rodrigues D. 12th International Symposium 2018

    Spot welds were fabricated in DC01 mild steel and HC 420-LA high strength steel sheets (thickness 1 mm) by friction stir spot welding (FSSW) using various pinless tools and process parameters, and thermographic analysis together with microstructural…

  5. Ueji R., Fujii H., Miura T. 10th International Symposium 2014

    Friction stir welding (FSW) experiments were undertaken on single crystal and polycrystalline pure iron sheets (thickness 1.5 mm) as well as a polycrystalline carbon steel, and the microstructure, material flow characteristics and plastic deformatio…

  6. Kolluri M., Luzginova N.V., Schuring E.W., Kyffin W., Martin J. 9th International Symposium 2012

    In relation to the application of ferritic/martensitic steels as cladding and duct materials in advanced nuclear reactors, an investigation is presented into the friction stir welding of P91 high alloy steel (0.11%C, 0.45%Mn, 8.41%Cr, 0.96%Mo) plate…

  7. Toumpis A., Galloway A., Cater S., Molter L. 10th International Symposium 2014

    A techno-economic assessment study was undertaken with respect to the feasibility of the friction stir welding (FSW) technique for microalloyed DH36 grade shipbuilding steel (0.11%C, 1.48%Mn, 0.02%Nb, 0.02%Al) plates (thickness 6 mm). Single sided f…

  8. Miyano Y., Fujii H., Sun Y., Katada Y., Kuroda S., Kamiya O. 8th International Symposium 2010

    The optimal conditions for the friction stir welding of high-N-containing austenitic stainless steel were evaluated. The influence of heat input (welding speed (50-400 mm/min)) on the surface appearance, macrostructure, microstructure, hardness, yie…

  9. Abdollah-Zadeh A., Mehri A., Entesari S., Assadi H. 10th International Symposium 2014

    Numerical modelling and experimental measurements were undertaken to investigate the extension and microstructure of the HAZ during friction stir welding (FSW) of 7075 aluminium alloy (Al, 5.86%Zn, 2.37%Mg, 1.91%Cu) thin sheets (thickness 1.2 mm). W…

  10. Shrivastava A., Zinn M., Duffie N., Pfefferkorn F.E., Ferrier N.J., Smith C.B. 10th International Symposium 2014

    Process force and discontinuity models were derived to estimate the forces observed in friction stir welding (FSW) in order to develop a method of detecting discontinuities during FSW using physics-based process modelling. FSW welded joints with and…

  11. Dong J.H., Dong C.L., Meng Q., Luan G.H. 9th International Symposium 2012

    Single run friction stir welding (FSW) experiments were undertaken on plate specimens (thickness 6 mm) of 7A60-T6 aluminium alloys (Al, 8.89%Zn, 2.74%Mg, 2.26%Cu) and the relationship between process parameters, microstructure and mechanical propert…

  12. Gesto D., Pintos V., Vazquez J., Villar I., Rasilla J., Barreras S. 7th International Symposium 2008

    A comparative investigation was undertaken of MIG and friction stir welding of AW 6082-T6 alloys (Al, 0.63%Mg, 0.84%Si, 0.71%Mn) for marine applications such as structural panels in pontoons, and the welded joint microstructure and mechanical proper…

  13. Colligan K.J. 8th International Symposium 2010

    A review of an experimental study of friction stir welded (FSW) 5456-H1 16 aluminium plate of 19 mm thickness, is presented and the formation of a pre-rotation defect and its effect on the mechanical properties of welds is discussed. Welds were made…

  14. da Silva A.A.M., Aldanondo E., Echeverria A. 8th International Symposium 2010

    FSSW has been performed in two different automotive 1.5 mm-thick aluminium alloys– AA5754-H22 and AA6082-T6 in similar and dissimilar combination using different joining parameters (e.g. plunge rate, rotational speed and dwell time). Plunge depth ha…

  15. Nagaoka T., Kimoto Y., Watanabe H., Fukusumi M., Morisada Y., Fujii H. 11th International Symposium 2016

    WC, 12%Co cemented carbide layers were deposited onto M2 tool steel (0.8-0.88%C, 3.8-4.5%Cr, 4.7-5.2%Mo, 5.9-6.7%W, 1.7-2.1%V) substrates by HVOF spraying and the effect of subsequent friction stir processing (FSP) on bonding strength and cermet coa…

  16. Wronska A., Dudek A., Derlatka A., Luty G. 11th International Symposium 2016

    Friction stir welding (FSW) was employed to fabricate overlap joints in thin AA 7075-T6 aluminium alloy (Al, 5.1-6.1%Zn, 2.1-2.9%Mg, 1.2-2%Cu) sheets (thickness 0.8 mm) coated with an anticorrosive aluminium layer and the microstructure and mechanic…

  17. Enomoto M., Kakiuchi S., Sto M. 12th International Symposium 2018

    A temperature monitoring system incorporating thermocouples mounted in the probe and shoulder was employed to measure the temperature of the rotating tool during the fabrication of dissimilar butt joints between A6005C aluminium alloy (Al, 0.5%Mg, 0…

  18. Rezaeinejad S.S., Bor T., Luckabauer M., Akkerman R. 13th International Symposium 2024

    This study explores the microstructural evolution of AA6060 builds that were fabricated via the recently developed Friction Screw Extrusion Additive Manufacturing (FSEAM) approach, and the role of a subsequent post-manufacturing ageing heat treatmen…

  19. Miyake M., Yoshikawa S., Takeoka N., Ohashi R., Edagawa T. 13th International Symposium 2024

    In this study, RFSSW of similar 5052-0 and 6061-T6 aluminum alloys with various thickness from 1.0 mm to 3.0 mm were performed by using cemented carbide tools. Microstructural features and mechanical properties of the joints produced with optimized …

  20. Mroczka K., Pietras A., Dymek S. 12th International Symposium 2018

    Dissimilar butt joints were fabricated between two aluminium alloys, 2017A-T451 (Al, 4.14%Cu, 0.72%Mg) and AlSi9Mg (Al, 8.6%Si, 0.31%Mg), by friction stir welding (FSW) using a dual-speed tool and their microstructure and mechanical properties were …

Loading...