TWI Digital Library

815 results in Symposia Papers
  1. Fukumoto M., Yasui T., Shimoda Y., Tsubaki M., Shinoda T. 5th International Symposium 2004

    Welding trials are reported to demonstrate joint formation between S45C mild steel and aluminium alloy 6063 using a friction stir diffusion process. Welding experiments were undertaken using a machining centre with a cemented carbide rotating tool, …

  2. Engelhard G., Hillers T., Pellkofer D. 3rd International Symposium 2001

    The development of orbital friction stir welding (FSW) technology for joining aluminium pipes for gas insulated power transmission lines (GIL) is described. The equipment is outlined: hydraulic unit, control panel, FSW head with steel wire rope and …

  3. Sato Y.S., Kokawa H., Enomoto M., Jogan S., Hashimoto T. 3rd International Symposium 2001

    The relationship between microstructure and hardness was investigated in friction stir welded aluminium alloy 6063-T5. The alloy thickness was 6 mm. Hardness profiles were measured across the stir zone. The microstructure of the as-welded and postwe…

  4. Miyano Y., Ueji R., Fujii H. 10th International Symposium 2014

    Friction stir butt welding experiments were conducted on S45C medium carbon steel sheets (thickness 1.5 mm) under various conditions and the microstructure and mechanical properties of the welded joints were investigated. Single run butt welding was…

  5. Jun H.J., Ayer R. 6th International Symposium 2006

    An experimental investigation is presented into the precipitation and hardening mechanism during FSW (friction stir welding) of Ni model alloys (Ni, 20%Cr, 2%Al, 2%Ti and Ni, 20%Cr, 3%Al, 3%Ti) in which Al and Ti contents were varied to control the …

  6. McCune R.W., Ou H., Armstrong C.G., Price M. 5th International Symposium 2004

    Three recently published finite element studies, modelling friction stir welding (FSW) of different aluminium alloys, were reproduced using ABAQUS software and the results were comparatively assessed. The models considered were as follows: heat tran…

  7. Arruti E., Quintana I., Aldanondo E., Alvarez P., Arregi E. 12th International Symposium 2018

    Dissimilar lap joints between AlSi10MgMn aluminium alloy sheets (thickness 3 mm) and Al-Si coated Usibor 1500 22MnB5 hot stamped boron steel sheets (thickness 1.8 mm) were fabricated by friction stir spot welding (FSSW) under different processing co…

  8. Schulze S., Goebel G., Fuessel U., Beyer E. 9th International Symposium 2012

    A 3D thermomechanical model, incorporating knowledge of residual distortion and stress, was developed as a finite element tool for simulation and optimisation of clamping situations in friction stir welding (FSW) and experiments were undertaken on A…

  9. Ayer R., Fairchild D.P., Ford S.J., Nissley N.E., Jin H.W., Ozekcin A. 7th International Symposium 2008

    An investigation was undertaken to determine the strength and fracture toughness of joints fabricated by friction stir welding (FSW) in commercial X65 (0.07%C, 1.56%Mn, 0.06%Nb, 0.013%Ti) and X80 (0.05%C, 1.52%Mn, 0.26%Cr, 0.26%Cu, 0.1%Nb and 0.07%C…

  10. Shibayanagi T., Maeda M. 5th International Symposium 2004

    The microstructure of joints produced between dissimilar Al alloys by friction stir welding (FSW) was studied. FSW was performed for joining of 5083/6061 Al alloy workpieces of 5 mm thickness using a rotation speed of 1800 rpm and a welding speed of…

  11. Magnusson L., Kallman L. 2nd International Symposium 2000

    The tensile and bend properties of friction stir welded butt joints in aluminium alloys 2024-T3, 6013-T6 and 7475-T76 were determined, including welds in 2024 and 7475 subjected to PWHT. The ultimate tensile strength, proof stress at 0.2% strain, an…

  12. Shrivastava A., Zinn M., Duffie N., Pfefferkorn F.E., Ferrier N.J., Smith C.B. 10th International Symposium 2014

    Process force and discontinuity models were derived to estimate the forces observed in friction stir welding (FSW) in order to develop a method of detecting discontinuities during FSW using physics-based process modelling. FSW welded joints with and…

  13. Dong J.H., Dong C.L., Meng Q., Luan G.H. 9th International Symposium 2012

    Single run friction stir welding (FSW) experiments were undertaken on plate specimens (thickness 6 mm) of 7A60-T6 aluminium alloys (Al, 8.89%Zn, 2.74%Mg, 2.26%Cu) and the relationship between process parameters, microstructure and mechanical propert…

  14. Enomoto M., Kakiuchi S., Sato M. 12th International Symposium 2018

    A temperature monitoring system incorporating thermocouples mounted in the probe and shoulder was employed to measure the temperature of the rotating tool during the fabrication of dissimilar butt joints between A6005C aluminium alloy (Al, 0.5%Mg, 0…

  15. Widener C.A., Tweedy B.M., Burford D.A. 7th International Symposium 2008

    The fatigue performance of friction stir welded butt joints in 2024-T3 aluminium alloy plate (thickness 6.35 mm) was investigated by adopting six different tool designs and using a design of experiments analysis over a wide range of process paramete…

  16. Abdollah-Zadeh A., Mehri A., Entesari S., Assadi H. 10th International Symposium 2014

    Numerical modelling and experimental measurements were undertaken to investigate the extension and microstructure of the HAZ during friction stir welding (FSW) of 7075 aluminium alloy (Al, 5.86%Zn, 2.37%Mg, 1.91%Cu) thin sheets (thickness 1.2 mm). W…

  17. Savolainen K., Mononen J., Saukkonen T., Hanninen H., Koivula J. 5th International Symposium 2004

    Friction stir welding trials, comprising double-sided butt welding of plates of thickness 10-11 mm, were conducted to investigate the weldability of copper and its alloys and to determine the correct process parameters (welding and rotation speeds) …

  18. Baumann J., Rose S., Martinek B., Reynolds A., Mahoney M. 12th International Symposium 2018

    With regard to the development of ausformed H13 tool steel for high strength friction stir welding (FSW) tools, an investigation was undertaken to explore methods to improve equal channel angle extrusion (ECAE) as the deformation step. Studies invol…

  19. Yang J., Wang D., Xiao B.L., Ma Z.Y. 8th International Symposium 2010

    Hot rolled AZ31 magnesium alloy plate of 6.3 mm thickness was friction stir welded (FSW) at rotation rates of 600-4000 rpm and a constant welding speed of 100 mm per minute and the microstructure and mechanical properties of the joints were investig…

  20. Colligan K.J. 8th International Symposium 2010

    A review of an experimental study of friction stir welded (FSW) 5456-H1 16 aluminium plate of 19 mm thickness, is presented and the formation of a pre-rotation defect and its effect on the mechanical properties of welds is discussed. Welds were made…

Loading...