TWI Digital Library

815 results in Symposia Papers
  1. Nagira T., Wu S., Wu Z., Fujii H. 12th International Symposium 2018

    Friction stir welding (FSW) experiments were undertaken on Cr-containing carbon steels (0.22%C, 0.5%Mn, 0-4%Cr) and the influence of Cr content on joint microstructure and mechanical properties was investigated. FSW was conducted at a tool rotationa…

  2. Ericsson M., Sandstrom R., Hagstrom J. 2nd International Symposium 2000

    The tensile and fatigue strength of friction stir welds were determined for aluminium alloy 6082 in various temper conditions. Plate of 5.8 mm thickness, in both T6 and T4 conditions, was welded using a tool speed of 1000 rev/min and a welding speed…

  3. Hashimoto T., Jyogan S., Nakata K., Kim Y.G., Ushio M. 1st International Symposium 1999

    The effects of friction stir welding process parameters (tool rotation speed and travel speed) on defects and mechanical properties in welds in aluminium alloys were investigated. Microstructural, macrostructural and mechanical properties of the wel…

  4. Mahoney M., Fuller C., DeWald A., Hill M. 6th International Symposium 2006

    Multirun friction stir processing (FSP) (12 mm depth over large surface area) was performed on NiAl bronze (Cu, 9.1%Al, 4.4%Ni, 3.9%Fe) thick plates (thickness 40 mm) using a rectangular spiral-out raster path, and longitudinal residual stresses wer…

  5. Shen J., Wen L.B., Li Y. 10th International Symposium 2014

    Friction stir spot welding (FSSW) was employed to fabricate lap joints in hot extruded AZ31 magnesium alloy sheets (thickness 2 mm), and the effect of introducing nanostructured SiC particles (mean size 40 nm) on the microstructure and mechanical pr…

  6. Chao Y.J., Qi X.H. 1st International Symposium 1999

    Finite element analysis was used to model the friction stir welding process in 6061-T6 aluminium alloy plate, to predict temperature, residual stress and distortion. Temperature distributions in the workpiece were determined as a function of time, c…

  7. Brinckmann S., von Strombeck A., Schilling C., dos Santos J.F., Lohwasser D., Kocak M. 2nd International Symposium 2000

    The repair of friction stir weld defects in aluminium alloy 6061-T6 3 mm thickness sheet (Al, 0.683%Mg, 0.564%Si) by friction stir welding was investigated using artificial defects. The defects were created using an unsuitable pin profile, whilst re…

  8. Jasthi B.K., Arbegast W.J., Howard S.M. 8th International Symposium 2010

    The microstructure and corrosion properties of welded joints in Inconel 22 (Alloy 22 or NO6022) made by friction stir welding (FSW) were investigated. Bead-on-plate welds were produced in Alloy 22 (59.6%Ni, 13.43%Mo, 0.22%Cr, 3.29%W, 3.17%Fe, 0.84%C…

  9. Ghidini T., Dalle Donne C. 4th International Symposium 2003

    Fatigue crack growth in friction stir welded (FSW) aluminium alloys 2024-T3 and 6013-T6 were predicted using two commercial software programs, ESACRACK and AFGROW in order to facilitate lifetime predictions of FSW aircraft structures. The following …

  10. Meyer A. 9th International Symposium 2012

    Friction stir welding (FSW) is discussed in manufacture of a sports car body made largely of aluminium alloy sheet with some components of cast aluminium or extruded aluminium, and the only steel used is the frame for the windscreen. Advantages are …

  11. Okamoto K., Doi M., Hirano S., Aota K., Okamura H., Aono Y., Ping T.C. 3rd International Symposium 2001

    The application of friction stir welding (FSW) to the fabrication of copper backing plates of thickness 6 mm was investigated. The welding conditions, FSW machine development, and mechanical and metallurgical properties of friction stir welded joint…

  12. Loftus Z., Venable R., Adams G.P. 1st International Symposium 1999

    Control equipment for the friction stir welding process was developed and evaluated for the production of a 8.4 m (27.5 ft) diameter, 0.32 in (8.13 mm) wall thickness 2195-T8 aluminium alloy space vehicle external fuel tank. The use of a computer-ba…

  13. Sullivan A., Horsfall I., Robson J.D., Prangnell P.B. 7th International Symposium 2008

    Weld zone simulation and ballistic testing were employed to determine the effect of friction stir welding on the ballistic performance in the HAZ, thermomechanically affected zone and nugget, under direct impact, of AA 7010-T7651 high-strength alumi…

  14. Pan W.B., Backlund J., Wang S., Shao H. 10th International Symposium 2014

    A friction stir welding technology was developed to facilitate welding extruded profiles together as a whole side wall in an aluminium railway wagon for coal transportation. The material employed was an AA 6061-T6 alloy plate (thickness 7 mm). Some …

  15. Cater S. 10th International Symposium 2014

    Friction stir welding experiments were undertaken on carbon manganese steel plates (thickness 6 mm) in order to map the internal temperature distribution, assess the effects of minimal plate preparation and investigate the microstructures and mechan…

  16. Fonda R.W., Bingert J.F., Colligan K.J. 5th International Symposium 2004

    The microstructure, crystallographic texture and grain distribution were determined in a transverse cross section of a friction stir weld and in a plan-view section through the embedded friction stir welding (FSW) tool. The weld was obtained by FSW …

  17. Joshi G.R., Badheka V.J. 11th International Symposium 2016

    An experimental investigation was undertaken to examine the effect of a TIG welding torch assisted heating source on the microstructure, mechanical properties and fracture mechanism of dissimilar Cu/austenitic stainless steel butt joints fabricated …

  18. Andrews D. 9th International Symposium 2012

    Following a brief overview of the state of the art and applications for FSW of aluminium and Al alloys, experience and activities with this process at TWI Ltd (UK) are introduced. Principles, advantages and applications are presented of some process…

  19. Nadeau F., Larouche D., Gougeon P. 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on AA 5083 aluminium alloys to investigate the influence of process parameters (rotational and travel speeds) and preheating temperature on abnormal grain growth after PWHT. The experimental sp…

  20. Pao P.S., Lee E., Feng C.R., Jones H.N., Moon D.W. 4th International Symposium 2003

    The microstructure, mechanical properties and fatigue behaviour of friction stir welded (FSW) and MIG welded butt joints in aluminium alloy 2519-T87 (Al, 5.3-6.4%Cu, 0.1-0.5%Mn, 0.02-0.1%Ti) plate of 25.4 mm thickness were compared. Friction stir we…

Loading...