TWI

77 results in Symposia Papers
  1. Boldsaikhan E., Bharat J., Logar A., Corwin E., Janes M., Arbegast W. 8th International Symposium 2010

    Quantification approaches applied to phase space data generated from friction stir welding aluminium alloys under varying process conditions are reported. A multi-step, micro-wormhole, non-destructive evaluation phase-spaced, (PS) algorithm that com…

  2. Kawasaki T., Ezumi M. 11th International Symposium 2016

    An overview is presented of the twenty year history and technological developments relating to the application of friction stir welding (FSW) to aluminium alloy railway car body shells. Issues discussed include the history of railway car body shell …

  3. Fuller C., Mahoney M., Bingel W. 5th International Symposium 2004

    Aluminium alloy fusion welds were modified by friction stir processing (FSP) as a function of FSP location and tool design, and differences between the FSP locations and tools were quantified by microstructure and mechanical property measurements (u…

  4. Dickerson T., Shercliff H.R., Schmidt H. 4th International Symposium 2003

    The incorporation of strips of copper foil in friction stir welded aluminium alloy plate was evaluated for flow visualisation without disturbing the welding process. The strips, of 0.1 mm thickness, were placed in various longitudinal and transverse…

  5. Przydatek J. 1st International Symposium 1999

    Guidance notes devised for Lloyd's Register of Shipping surveyors for use in the quality assurance of friction stir welded aluminium alloys are presented.The notes cover: welding equipment, materials welded, and welding requirements (weld qualificat…

  6. Bordesoules I., Bigot A., Hantrais C., Odievre T., Laye J. 9th International Symposium 2012

    In relation to the development of "AIRWARE" technology based on Al-Cu-Li alloys for aircraft structural parts, a report is presented into the friction stir welding (FSW) of "AIRWARE" 2050 alloys, mechanical characterisation of welded joints, and ind…

  7. Colligan K.J. 7th International Symposium 2008

    A conceptual model was developed to describe the relationship between process variables and physical properties such as spindle torque, heat generation and workpiece temperature distribution for friction stir welding of aluminium alloys. The materia…

  8. Dong P., Lu F., Hong J.K., Cao Z. 1st International Symposium 1999

    A series of models was used to study weld formation in 6000-series aluminium alloy in the friction stir welding process. Weld formation was considered as three separate thermomechanical processes: coupled friction heat generation; plastic flow slip …

  9. Yoshikawa K. 4th International Symposium 2003

    This paper describes the joining criterion for lap joining of dissimilar metal materials of aluminum and stainless steel by friction stir. A criterion for evaluating the joined state or non-joined state is proposed, which is led by the concept based…

  10. Weinberger T., Khosa S., Fuhrer B., Enzinger N. 7th International Symposium 2008

    Friction stir welding (FSW) experiments were undertaken on sheet specimens (thickness 4 mm) of AISI 304 stainless steel (17.5-19.5%Cr, 8-10.5%Ni) using different uncoated and coated tungsten and WC-based tools, and tool wear and failure mechanisms w…

  11. Sun Y.F., Fujii H., Takaki N., Okitsu Y. 9th International Symposium 2012

    A friction stir spot welding process variant was evaluated, which was intended to remove the hole left in the weld when the probe is removed, and consequently improve weld properties. In the two-step procedure, first a backing plate was used that ha…

  12. Klag O., Wagner G., Eifler D. 9th International Symposium 2012

    Friction stir welding (FSW) was employed to fabricate hybrid joints between wrought AA 5454 aluminium alloys and AZ 91 die cast magnesium alloys, and the weldability, microstructure, mechanical properties, corrosion and fracture behaviour of the wel…

  13. Ding J., Schneider J. 8th International Symposium 2010

    Conventional friction stir welding (FSW), hybrid FSW and thermal stir welding were evaluated and compared for the joining of a nickel-based superalloy Haynes 230. Welds were made in Haynes 230 NiCrW alloy (20-24%Cr, 13-15%W, 6.4 mm thickness), an in…

  14. Feng X.M., Feng Z.Y., Lv X.W., Wang T. 11th International Symposium 2016

    Defects and their mitigation associated with the fabrication of fluid-cooled aluminium alloy heatsinks for electronic applications are discussed. The heatsink consisted of an aluminium alloy 6063 substrate (310 x 300 mm) with a series of rectangular…

  15. Blanchard S., Langrand B., Fabis J., Denquin A. 6th International Symposium 2006

    Arcan tests (pure tensile, pure shear and mixed tensile/shear loads) were performed on parent material (6056-T78 aluminium alloy) and friction stir welded (FSW) specimens for comparison purposes and to assess the capability of strain field measureme…

  16. Wu H., Chen Y.C., Prangnell P.B. 10th International Symposium 2014

    Stationary shoulder friction stir welding (SSFSW) and conventional FSW experiments were undertaken on AA 7050-T7651 alloy plates (thickness 6.3 mm) to demonstrate the advantages of SSFSW with respect to surface finish, thermal profile symmetry, HAZ …

  17. Suda T., Sakamoto Y., Miyamichi T., Sato T. 9th International Symposium 2012

    An investigation is presented into the development of the stationary shoulder self-reacting pin tool (SSSRPT) as a friction stir welding variant and the application of the tool to fabrication of butt joints in sheets (thickness 4 mm) of A6N01 alloys…

  18. Al-Zubaidy B.M., Chen Y.C., Prangnell P. 10th International Symposium 2014

    A refill friction stir spot welding (RFSSW) process with a short welding cycle time was employed to fabricate welded joints in thin gauge AA 6111-T4 aluminium alloy sheets (thickness 0.9 mm) and the mechanical properties of the joints were investiga…

  19. Russell M.J., Shercliff H.R. 1st International Symposium 1999

    A softening model was constructed for friction stir welding (FSW) of 2xxx series aluminium alloys and was combined with previously derived thermal cycle modelling work. A thermal model of energy input and heat conduction was used to calculate therma…

  20. Smith A.J., Almoussawi M. 12th International Symposium 2018

    An experimental and numerical analysis of the wear of a polycrystalline boron nitride (PCBN) friction stir welding (FSW) tool is overviewed as presentation slides. Topics highlighted include: FSW plunge trials of EH46 shipbuilding steel at a plunge …

Loading...