TWI Digital Library

57 results in Symposia Papers
  1. Thoma M., Wagner G., Wolter B., Conrad C., Strass B., Furbeth W., Benfer S. 11th International Symposium 2016

    An ultrasound assisted friction stir welding (UA-FSW) technique was employed to fabricate butt joints in similar Al/Al and dissimilar Al/Mg sheets, and the influence of ultrasonic oscillations on weld zone microstructure and mechanical properties wa…

  2. Chung Y.D., Fujii H. 8th International Symposium 2010

    The influence of tool and plate positions on the friction stir welding of F82H ferritic/martensitic steel (0.1%C, 8%Cr, 2%W, 0.2%V, 0.04%Ta) and austenitic stainless steels 304 and 316 was investigated. Stainless steel compositions were: 304 (0.08%C…

  3. Nishihara T. 6th International Symposium 2006

    A simplified friction stir welding (FSW) tool equipped with an adjustable probe was developed, FSW trial results with prototype tools were obtained and were analysed in terms of weldability. The simplified tools were realised by devising shoulders f…

  4. Rodriguez Fernandez J., Ramirez A.J. 9th International Symposium 2012

    Dissimilar lap joints between ASTM A36 low carbon steel and Inconel 625 (Ni, 21.4%Cr, 9.65%Mo, 3.2%Nb, 2.6%Fe) were fabricated by friction stir welding (FSW) and the effects of process parameters on microstructure and hardness were investigated. FSW…

  5. Fujii H., Inada K., Su J.Y., Sun Y.F., Morisada Y. 8th International Symposium 2010

    The development and use of friction stir powder processing (FSPP) to overcome defect formation and to control mechanical properties is discussed and FSPP of AA 1050 aluminium (Al, 0.06%Si, 0.34%Fe, 0.02%Cu) is reported. In FSPP, powder with a contro…

  6. Sato T., Otsuka D., Watanabe Y. 6th International Symposium 2006

    A numerical model of the friction stir welding (FSW) process was developed by employing finite element analysis of a non-Newtonian fluid to evaluate plastic deformation and heat generation of the weld material, and was applied to the design of tool …

  7. Avettand-Fenoel M.N., Simar A., Shabadi R., Taillard R., de Meester B. 10th International Symposium 2014

    Friction stir processing (FSP) was employed to fabricate oxide dispersion strengthened copper composites and the microstructure and mechanical properties of the materials were investigated in order to clarify the effect of process parameters on mate…

  8. Penalva M.L., Arregi B., Rivero A., Buffa G., Fratini L. 8th International Symposium 2010

    An investigation was carried out in order to examine the feasibility of producing friction stir welded FSW T-joints using the corner fillet geometry. A specific tool comprising a rotating pin (made of MP159) with a 45 degree inclination to the two p…

  9. Colligan K.J. 8th International Symposium 2010

    A review of an experimental study of friction stir welded (FSW) 5456-H1 16 aluminium plate of 19 mm thickness, is presented and the formation of a pre-rotation defect and its effect on the mechanical properties of welds is discussed. Welds were made…

  10. Christner B., McCoury J., Higgins S. 4th International Symposium 2003

    A discussion is presented on the development of a FSW process for the welding of thin gauge aluminium alloy lap joints in the fuselage and wing sections of the Eclipse 500 twin-engine jet aircraft. The issues of pin tool geometry for use on lap join…

  11. Miyake M., Yoshikawa S., Takeoka N., Ohashi R., Edagawa T. 13th International Symposium 2024

    In this study, RFSSW of similar 5052-0 and 6061-T6 aluminum alloys with various thickness from 1.0 mm to 3.0 mm were performed by using cemented carbide tools. Microstructural features and mechanical properties of the joints produced with optimized …

  12. de Souza Santos P. 13th International Symposium 2024

    The SCIENZE (Supply Chain Innovation Engineering for Net Zero) Project aims to create a UK based supply chain that is capable of manufacturing the next generation of power electronic components at volumes higher than is currently feasible to do toda…

  13. Perrett J.G., Davis B. 8th International Symposium 2010

    In the last fifteen years, friction stir welding has developed from a laboratory curiosity to an important fabrication technique for lightweight, lower softening temperature alloys. Industrial implementation of joining magnesium has been limited alm…

  14. Hirano S., Okamoto K., Aota K., Okamura H., Aono Y., Odakura T. 3rd International Symposium 2001

    The development of three-dimensional column-type friction stir welding (FSW) equipment for robotic FSW of joints with complex shapes is described. The process requires a large force and precision control for tool penetration. The specification of th…

  15. Chen Y.C., Zhong X.L., Al-Zubaidy B.M., Prangnell P. 10th International Symposium 2014

    Abrasion circle and modified refill friction stir spot welding (FSSW) techniques were employed to fabricate dissimilar joints between 6111-T4 (Al, 0.75%Mg, 0.69%Si, 0.75%Cu) and AZ31 (Mg, 3%Al, 1%Zn, 0.5%Mn) alloy sheets (thickness 0.9 mm) with the …

  16. Ross K.A., Sorensen C.D. 9th International Symposium 2012

    Analytical modelling and experimental measurements were undertaken to investigate a dual-loop temperature control algorithm for friction stir processing, incorporating an inner loop to maintain constant power and an outer loop to set the power based…

  17. Nishihara T., Nagasaka Y. 5th International Symposium 2004

    In order to develop a method for microjoining by friction stir welding (FSW), micro-FSW trials were conducted on Mg alloy AZ31 (2.97%Al, 0.83%Zn) thin sheets (0.4 mm thickness), and the welding performance was assessed. The micro-FSW system incorpor…

  18. Masaki K., Saito H., Nezaki K. 11th International Symposium 2016

    A simultaneous double sided corner Ad-Stir fillet stationary shoulder friction stir welding (SSFSW) process was developed for LNG (liquefied natural gas) storage tank construction. The microstructure and mechanical properties of welded joints were i…

  19. Beamish K., Ezeilo A., Smith S., Lewis P., Cheetham P. 6th International Symposium 2006

    A device was designed and manufactured to facilitate accurate monitoring of forces, torque and tool temperature during friction stir welding (FSW) and for use as a weld quality indicator in relation to issues such as tool wear, lack of tool penetrat…

  20. Sato Y.S., Kokawa H., Enomoto M., Jogan S., Hashimoto T. 3rd International Symposium 2001

    The relationship between microstructure and hardness was investigated in friction stir welded aluminium alloy 6063-T5. The alloy thickness was 6 mm. Hardness profiles were measured across the stir zone. The microstructure of the as-welded and postwe…

Loading...