TWI Digital Library

147 results in Symposia Papers
  1. Ivanov E., Theado E. 8th International Symposium 2010

    Friction stir welding (FSW) has been used to weld aluminum alloys such as 7075 to 7075, which is considered not weldable by most other methods. In this application FSW was used to join two dissimilar aluminum alloys 7075 and 6N pure copper in a lap …

  2. Van Haver W., Deplus K., de Meester B., Simar A., Van Daele W., Defrancq J., Dhooge A. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on thin sheet specimens (thickness 0.8 mm) of 5754-H111 alloys (Al, 2.7%Mg) in a butt joint configuration, and the influence of process conditions on microstructural, mechanical and corrosion propert…

  3. Mahoney M., Steel R., Nelson T., Packer S., Sorensen C. 7th International Symposium 2008

    An extensive study of friction stir welding (FSW) of HSLA-65 steel plate (thickness 6 mm) was undertaken, incorporating defect-free friction stir butt welding at a travel speed of 3.4 mm/s, the achievement of low/no distortion FSW by employing appro…

  4. Casanova J., Sorger G., Vilaca P., Brandi S.D. 12th International Symposium 2018

    With regard to the development of 9%Ni steels for cryogenic applications, an investigation was undertaken into the metallurgical weldability of ASTM A553 Type I steel (0.08%C, 0.73%Mn, 9.4%Ni) joined by double-sided two-run friction stir welding (FS…

  5. Russell M. 8th International Symposium 2010

    A slide style presentation giving a market review of FSW, challenges for FSW users and process enhancements. The development of equipment and methods for floating bobbin tool FSW and stationary shoulder friction stir welding is outlined. Lifetimes o…

  6. Jonckheere C., de Meester B., Simar A. 8th International Symposium 2010

    Similar and dissimilar friction stir welds (FSW) were performed between 2014-T6 and 6061-T6 aluminium alloy sheet (4.70 mm thickness). Weld speed of 450 and 90 mm per minute were used to produce welds described as cold and hot welds respectively. Ad…

  7. Yasui T., Tahara H., Suzuki T., Tsubaki M., Fukumoto M. 9th International Symposium 2012

    Friction stir spot welding (FSSW) experiments were undertaken to fabricate dissimilar metal joints between aluminium and light metals such as magnesium and titanium, and the microstructure and mechanical properties of the weldments were investigated…

  8. Smith C.B., Hinrichs J.F., Cerveny L.M., Anderson R. 7th International Symposium 2008

    An investigation is presented into the use of a friction stir welding/forging process to fabricate tee and I-beam shapes with integral radial shaped fillets, the optimisation of process parameters for different alloys and shapes, and the results of …

  9. Cole E.G., Ferrier N.J., Zinn M.R., Duffie N.A., Pfefferkorn F.E. 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on sheet specimens (thickness 5 mm) of 5454-H111 aluminium alloys and the relationships between process forces, spindle power and tool geometry were investigated. Twelve FSW tools with specifie…

  10. Capar N., Tekelioglu O., Calli M., Tekin G., Kumru U.C., Baser T., Yilmazoglu G. 12th International Symposium 2018

    With regard to the development of dissimilar aluminium-steel joint fabrication for automotive applications such as body-in-white, an investigation incorporating experiment and numerical simulation was undertaken to examine the dissimilar friction st…

  11. Dalkilic S., Biallas G. 6th International Symposium 2006

    Friction stir welding (FSW) experiments were undertaken to investigate the feasibility of joining a metal matrix composite (MMC), comprising an AA 2124 matrix and 25 vol.% SiC particles, to itself and to a monolithic alloy (AA 2024-T3), and the micr…

  12. Lienert T.J., Tang W., Hogeboom J.A., Kvidahl L.G. 4th International Symposium 2003

    Friction stir welding of DH-36 mild steel sheet was evaluated for shipbuilding applications. Butt welds were prepared in sheet of 4.6 mm (0.18 in) thickness using an unthreaded tool (W, 25%Re) rotating at 400 or 500 rpm and travelling at 203 mm/min …

  13. Nakata K., Inoki S., Nagano Y., Hashimoto T., Johgan S., Ushio M. 3rd International Symposium 2001

    The weldability of 2 mm thickness thixomoulded sheets of AZ91D magnesium alloy by friction stir welding (FSW) was studied as a function of tool rotation speed (880-1750 rpm) and specimen travel speed (50-500 mm/min). The composition of the sheet was…

  14. Sato Y.S., Kawata Y., Tokita S., Wada T., Kato H. 13th International Symposium 2024

    Liquid metal dealloying is a promising method relying on the selective dissolution of a component from a precursor alloy into a liquid metal, resulting in production of bicontinuous porous surface on the precursor alloy. To expand use of the porous …

  15. Mahoney M., Sanderson S., Steel R., Babb J., Maak P., Fleck D. 10th International Symposium 2014

    With regard to the fabrication of closure welds for used fuel containers, a series of experiments was undertaken to demonstrate the feasibility of creating defect-free partial penetration welds by friction stir welding (FSW) in A516 Grade 70 steel (…

  16. Bernath J., Thompson B., Stotler T. 8th International Symposium 2010

    The application of suitable friction stir welding (FSW) tools and procedures to common structural geometries in industry, with emphasis of FSW of hard metals including steel, titanium and nickel based alloys in butt, T-joint, corner joint and circum…

  17. Tsujikawa M., Koizumi S., Oguri T., Oki S., Chung S.W., Higashi K. 6th International Symposium 2006

    Extruded AZ31 (Mg, 3%Al, 1%Zn) alloy plates (thickness 6 mm) were joined by one-run or two-run friction stir welding (FSW) and the microstructure, mechanical properties and residual stress characteristics of the welded joints were investigated. FSW …

  18. Schneider J., Chen P., Nunes A.C. 11th International Symposium 2016

    With regard to the occurrence of residual oxide defects associated with friction stir welding (FSW) of aluminium alloys, an investigation is presented into a possible alternative mechanism for oxide formation within the weld nugget involving enhance…

  19. Chen C.M., Kovacevic R. 4th International Symposium 2003

    A three-dimensional thermomechanical model of the friction stir welding of aluminium alloy was developed, based on the finite element method, to predict temperature and stress distributions in the workpiece, residual stresses, and the stresses exper…

  20. von Strombeck A., dos Santos J.F., Torster F., Laureano P., Kocak M. 1st International Symposium 1999

    The relationship between microstructure and properties, and the influence of microstructure on the fracture toughness of friction stir welded aluminium alloys with weld zone strength undermatching were investigated. Welds were made in 5005-H14, 2024…

Loading...