TWI

141 results in Symposia Papers
  1. Bernath J., Thompson B., Stotler T. 8th International Symposium 2010

    The application of suitable friction stir welding (FSW) tools and procedures to common structural geometries in industry, with emphasis of FSW of hard metals including steel, titanium and nickel based alloys in butt, T-joint, corner joint and circum…

  2. Tsujikawa M., Koizumi S., Oguri T., Oki S., Chung S.W., Higashi K. 6th International Symposium 2006

    Extruded AZ31 (Mg, 3%Al, 1%Zn) alloy plates (thickness 6 mm) were joined by one-run or two-run friction stir welding (FSW) and the microstructure, mechanical properties and residual stress characteristics of the welded joints were investigated. FSW …

  3. Schneider J., Chen P., Nunes A.C. 11th International Symposium 2016

    With regard to the occurrence of residual oxide defects associated with friction stir welding (FSW) of aluminium alloys, an investigation is presented into a possible alternative mechanism for oxide formation within the weld nugget involving enhance…

  4. Buhl N., Wagner G., Eifler D., Gutensohn 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on commercially pure titanium and Ti, 6%Al, 4%V alloy sheets (thickness 1.2 and 1.25 mm, respectively), the microstructure of the weldments was examined and the wear mechanisms of the welding t…

  5. Steel R., Liu Q.Y., Yao X., Packer S., Leonhardt T. 7th International Symposium 2008

    An investigation is presented into the development of polycrystalline cubic boron nitride (PCBN) and composite W-Re alloys with PCBN and diamond reinforcement as tool materials for friction stir welding of high temperature materials. High-pressure, …

  6. Kahl S. 8th International Symposium 2010

    An experimental investigation was conducted into the friction stir welding (FSW) of 6 mm thickness aluminium alloy AA6082-T6 using welding conditions slightly outside the common process window. The microstructure, quality and fatigue strength of the…

  7. Buffa G., Fratini L., Micari F., Shivpuri R. 6th International Symposium 2006

    The development and experimental validation of a finite element model ("DEFORM-3D" software) for friction stir welding (FSW) of 7XXX series aluminium alloys (e.g. AA-7075) with varying pin angle and advancing speed are described, and application of …

  8. Nelson T.W., Sorensen C.D., Mayfield D. 8th International Symposium 2010

    A presentation is made of a successful demonstration of the friction stir welding (FSW) of steel capabilities in a shipyard production facility, summarising the equipment, fixturing and tooling requirements. HSLA-65 steel panels (17m x 2.4m), 6mm th…

  9. Reynolds A.P., Posada M., DeLoach J., Skinner M.J., Halpin J., Lienert T.J. 3rd International Symposium 2001

    Friction stir welds were made in the austenitic stainless steels 304L (thickness 6.4 mm (0.25 in) and 3.2 mm (0.125 in)) and the superaustenitic stainless steel AL 6XN. Welds in the 3.2 mm sheet were made in a single pass. The 6.4 mm plates were wel…

  10. Nelson T.W., Zhang H., Haynes T. 2nd International Symposium 2000

    Friction stir welded and TIG welded butt joints in aluminium alloy 6061 matrix B4C-reinforced (15-30% B4C) composites were compared. TIG welds were produced using a combination of aluminium alloys 4043 and 4047 as filler metal with pure Ar or a mixe…

  11. Meyer A. 9th International Symposium 2012

    Friction stir welding (FSW) is discussed in manufacture of a sports car body made largely of aluminium alloy sheet with some components of cast aluminium or extruded aluminium, and the only steel used is the frame for the windscreen. Advantages are …

  12. Uematsu Y., Tokaji K., Murata S. 6th International Symposium 2006

    Fatigue tests were performed using lap-shear specimens of friction stir spot welded Al, 0.8%Mg, 1%Si alloys. Sheet specimens (thickness 2 mm) were subjected to PWHT of solution treatment and/or ageing. Weld zone microstructure was observed by SEM. F…

  13. Cao X., Jahazi M., Mehta R. 6th International Symposium 2006

    The joining of hot rolled aerospace quality AZ31B-H24 magnesium alloy (Mg, 2.5-3.5%Al, 0.7-1.3%Zn, 0.2-1.0%Mn) sheets (thickness 4.95 mm) was investigated using an MTS ISTIR friction stir welding (FSW) machine, the quality of the butt joints produce…

  14. Leonard A.J., Lockyer S.A. 4th International Symposium 2003

    An experimental study was carried out to characterise the types of defect which may occur in friction stir welding (FSW) when operating outside the standard processing window and to determine the causes of these defects. Friction stir welds were mad…

  15. Lohwasser D. 4th International Symposium 2003

    Results are presented from tests carried out to determine the mechanical and corrosion properties of friction stir welds in sheets of thickness 4 mm of two aerospace aluminium alloys AA-6056 and AA-6013. The specimens included alloys in the T6 condi…

  16. Nerman P., Andersson J. 4th International Symposium 2003

    Different aluminium alloys were joined by friction stir welding (EN AW-5754-H14 to sheets of the same material, extruded profile EN AW-6063-T6 sheets to high pressure die cast EN AC-46000) and characterised by x-ray and microscopy studies, and the m…

  17. Johnson R. 4th International Symposium 2003

    The weldability of magnesium alloys by friction stir welding was studied using three die-cast alloys of thickness 6 mm (AM50 and AM60 Mg-Al-Mn alloys; AZ91 Mg-Al-Zn alloy) and one wrought alloy of thickness 6.4 mm (AZ231 Mg-Al-Zn alloy). Surface app…

  18. Steel R., Packer S., Larsen S., David T., Fleck D., Mahoney M. 11th International Symposium 2016

    Based on lessons learned from the MegaStir research programme devoted to friction stir welding (FSW) of high temperature alloys and with the aim of producing high quality, defect free welded joints while maximising tool life, a report is presented i…

  19. Ding R.J. 2nd International Symposium 2000

    The forces exerted on the pin of a friction stir welding tool with a variable length pin (retractable pin-tool) were measured whilst welding aluminium alloy 2195 plate of 8.4 mm thickness, to develop a closed loop control system. Forces were measure…

  20. Lienert T.J., Gould J.E. 1st International Symposium 1999

    The feasibility of friction stir welding steels was investigated using mild (low-carbon) steel plate (AISI-1010) of 6.4 mm (0.25 in) thickness. Temperature distributions were predicted using a simple thermal model. Tool wear was assessed by determin…

Loading...