TWI Digital Library

51 results in Symposia Papers
  1. Monsarrat B., Larose S., Wanjara P., Fortin Y., Comeau G., Yousefpour A. 11th International Symposium 2016

    An investigation is presented into the development of a flexible 3D friction stir welding (FSW) process capacity incorporating a rail mounted industrial robot to facilitate high production rate repair of aluminium cathodes for electro refining opera…

  2. Williams S.W., Colgrove P.A., Shercliff H., Prangnell P., Robson J., Withers P., Richards D., Sullivan A., Kamp N., Lohwasser D., Poad M. 6th International Symposium 2006

    An integrated modelling approach, incorporating coupled process, material response and material performance models, was developed and implemented for use in friction stir welding (FSW) of aerospace structures. The process model employed was a dynami…

  3. Cui S., Chen Z., Robson J. 8th International Symposium 2010

    An experimental study was conducted to measure the torque of friction stir welded cast aluminium A356 (Al, 7%Si, 0.3%Mg) over a range of travel and rotational speeds. Plates of 6.35 mm thickness were FSW using travel speeds and rotational speeds ran…

  4. Troost N.C.H., Mohandas N., Cater S., Popovich V.A., den Besten J.H. 13th International Symposium 2024

    Friction stir welds were produced from S460N and S355N steel alloys for several combinations of welding speed and rotational speed with the heat input ranging from 130 to 180 [J/mm]; or, from insufficient to excessive. The welds were characterised a…

  5. Steuwer A., Peel M.J., Withers P.J. 6th International Symposium 2006

    An investigation is presented into the processing window for friction stir welding (FSW) of Formall 545 (equivalent to AA-5083) to age-hardened AA-6082 aluminium alloys with regard to tool rotation and traverse speeds, and into an evaluation of a nu…

  6. Sorensen C.D., Nelson T.W., Parker S.M., Steel R.J. 5th International Symposium 2004

    Technology improvements and process innovations in respect of friction stir welding (FSW) of high temperature materials are reviewed, welding process conditions and mechanical properties of completed welds for various alloys using polycrystalline cu…

  7. Mahoney M., Nelson T., Steel R., Sorensen C., Rose S., Kingston R., Packer S. 8th International Symposium 2010

    Friction stir welding (FSW) trials were carried out for thin HSLA-65 steel plate (6 mm thickness) to evaluate the potential benefits of using induction preheat. Other studies including tool design and multi-run welding are also evaluated as methods …

  8. Oosterkamp L.D., Ivankovic A., Oosterkamp A. 2nd International Symposium 2000

    An instrumented constrained Charpy test was used to measure the fracture toughness of friction stir welded joints produced using several designs of welding tool in sheet aluminium alloys 6082 (4.7 mm) and 7108 (3.2, 5.0 mm). This test constrained pl…

  9. Ochi M., Morisada Y., Fujii H. 12th International Symposium 2018

    With regard to the fabrication of hollow structures by the inversion friction stir welding (IV-FSW) technique, welded joints were fabricated in A-1050 and A-6061 aluminium alloy and SPCC steel sheets (thickness 2 mm) by IV-FSW and their surface appe…

  10. Palm F., Hennebohle U., Erofeev V., Karpuchin E., Zaitzev O. 5th International Symposium 2004

    As part of a project to develop a physical-mathematical model and software for thermal simulation of the friction stir welding (FSW) process, an initial version "FricSim2.2" was created and verified, using the software tool "SpotFSW" to convert the …

  11. Marie F., Guerin B., Deloison D., Aliaga D., Desrayaud C. 7th International Symposium 2008

    The bobbin tool or self-reacting tool variant of the friction stir welding process was investigated on butt joints of various 2000 series aluminium alloys for aircraft fuselage applications; welding feasibility tests were conducted in pin length con…

  12. Doude H., Schneider J., Ma B., Du J., Patton B., Waters T. 9th International Symposium 2012

    Butt joints were fabricated in AA 2219-T87 aluminium alloy panels (thickness 6.35 mm) by friction stir welding (FSW), and force data collected during welding were analysed using an unsupervised matched filter technique to classify weldment segments …

  13. Skinner M., Edwards R.L., Adams G., Li Z.X. 4th International Symposium 2003

    A description is presented of the self reacting friction stir welding (SR-FSW) process and the specially designed welding head; results are reported from tests determining the mechanical properties of SR-FSW welds in AA-2219 and AA-2195 aluminium al…

  14. Gariepy A., Nadeau F., Gambou-Bosca A., Gregoire H. 12th International Symposium 2018

    Dissimilar overlap joints between different aluminium alloys were fabricated by friction stir welding (FSW) and the influence of alloy composition and FSW tool type on fatigue fracture, microstructure and mechanical properties was investigated. The …

  15. Li Y., Shen J., Wen L.B. 10th International Symposium 2014

    Friction stir spot welding experiments were undertaken on AZ31 magnesium alloy (Mg, 3%Al, 1%Zn, 0.2%Mn) sheets (thickness 2 mm) in order to investigate the influence of a flame spray gun rapid preheating process on the microstructures and mechanical…

  16. Russell M. 10th International Symposium 2014

    A project to introduce friction stir welding for aluminium shipbuilding in Taiwan is described. The advantages of FSW compared with arc welding for this application are summarised. Stages of the project are outlined, covering work with local tool fa…

  17. Dalle Donne C., Lima E., Wegener J., Pyzalla A., Buslaps T. 3rd International Symposium 2001

    Friction stir welds were made in 4 mm thick sheets of aluminium alloys 2024-T3 and 6013-T6. The stress intensity factor due to residual stresses was determined using the cut compliance method. The residual stress distribution was calculated using th…

  18. Nazarlou R.D., Eren M.A., Sommer N., Bohm S. 13th International Symposium 2024

    Artificial Intelligence algorithms based on machine learning approaches have recently found application in joining and welding, e.g., for the optimization of process parameters or the prediction of resulting mechanical properties. The importance of …

  19. Derlatka A., Lacki P. 12th International Symposium 2018

    Lap joints were fabricated in 2024-T3 aluminium alloy sheets (thickness 1 or 0.6 mm) by refill friction stir spot welding (RFSSW) and the influence of tool sleeve depth on joint quality was investigated. Welding was performed at tool depths of 1.1-1…

  20. Meng Q., Luan G.H., Dong C.L. 10th International Symposium 2014

    Friction stir welding experiments were undertaken on Al-Li alloys for application to C919 passenger aircraft fuselage panels, and the microstructure and mechanical properties of the welded lap joints were investigated. The materials comprised 2060-T…

Loading...