TWI Digital Library

49 results in Symposia Papers
  1. De Vuyst T., D'Alvise L., Simar A., de Meester B., Pierret S. 5th International Symposium 2004

    A direct modelling approach ("SAMCEF" software finite element simulation) coupled with an inverse model, based on genetic algorithm optimisation (MAX software), was applied to the friction stir welding (FSW) process for two aluminium alloys (6005A-T…

  2. Bozzi S., Etter A.L., Baudin T., Robineau A., Goussain J.C. 6th International Symposium 2006

    To understand the influence of dwell time in friction stir welding (FSW) and thus to optimise its value, spot welds were produced between superposed sheets of 6008 aluminium alloy and industrial steel (thickness 2.5 and 2 mm, respectively), and thei…

  3. Derlatka A., Lacki P. 12th International Symposium 2018

    Lap joints were fabricated in 2024-T3 aluminium alloy sheets (thickness 1 or 0.6 mm) by refill friction stir spot welding (RFSSW) and the influence of tool sleeve depth on joint quality was investigated. Welding was performed at tool depths of 1.1-1…

  4. Palm F., Hennebohle U., Erofeev V., Karpuchin E., Zaitzev O. 5th International Symposium 2004

    As part of a project to develop a physical-mathematical model and software for thermal simulation of the friction stir welding (FSW) process, an initial version "FricSim2.2" was created and verified, using the software tool "SpotFSW" to convert the …

  5. Nelson T.W., Sorensen C.D., Steel R.J., Packer S.M., Mahoney M.W. 6th International Symposium 2006

    A brief review is presented of the state of development of polycrystalline cubic boron nitride (PCBN) tool materials for friction stir welding (FSW) of high-temperature materials (high alloy steels and Ni based alloys) with respect to weld penetrati…

  6. Ochi M., Morisada Y., Fujii H. 12th International Symposium 2018

    With regard to the fabrication of hollow structures by the inversion friction stir welding (IV-FSW) technique, welded joints were fabricated in A-1050 and A-6061 aluminium alloy and SPCC steel sheets (thickness 2 mm) by IV-FSW and their surface appe…

  7. Mahoney M., Nelson T., Steel R., Sorensen C., Rose S., Kingston R., Packer S. 8th International Symposium 2010

    Friction stir welding (FSW) trials were carried out for thin HSLA-65 steel plate (6 mm thickness) to evaluate the potential benefits of using induction preheat. Other studies including tool design and multi-run welding are also evaluated as methods …

  8. Voellner G., Zaeh M.F. 7th International Symposium 2008

    A comparative study was undertaken of three different machine types, a modified high payload robot, a CNC milling machine and an ESAB "SuperStir" FSW machine, in terms of their capability for FSW of various aluminium alloys using identical process p…

  9. Kadlec M., Ruzek R., Novakova L., Nor K., Perrier F., Nguyen-Dinh A., Chatzakos P. 10th International Symposium 2014

    Friction stir welding was employed to fabricate welded joints in AA 7475-T7351 aluminium alloy plates (thickness 6.35 mm) and the effect of kissing bond defects on fatigue life and other mechanical properties was investigated. Welded test specimens …

  10. Li Y., Shen J., Wen L.B. 10th International Symposium 2014

    Friction stir spot welding experiments were undertaken on AZ31 magnesium alloy (Mg, 3%Al, 1%Zn, 0.2%Mn) sheets (thickness 2 mm) in order to investigate the influence of a flame spray gun rapid preheating process on the microstructures and mechanical…

  11. Russell M. 10th International Symposium 2014

    A project to introduce friction stir welding for aluminium shipbuilding in Taiwan is described. The advantages of FSW compared with arc welding for this application are summarised. Stages of the project are outlined, covering work with local tool fa…

  12. Klein M., Osikowicz W., Fremling J., Lindh-Ulmgren E., Engman M., Falkenstrom M. 12th International Symposium 2018

    With regard to the application of friction stir welding (FSW) for the butt weld joining of aluminium alloy extrusions into large panels for ship decks and railway carriages, an investigation is presented into the employment of laser ultrasonic testi…

  13. Marie F., Guerin B., Deloison D., Aliaga D., Desrayaud C. 7th International Symposium 2008

    The bobbin tool or self-reacting tool variant of the friction stir welding process was investigated on butt joints of various 2000 series aluminium alloys for aircraft fuselage applications; welding feasibility tests were conducted in pin length con…

  14. Steuwer A., Peel M.J., Withers P.J. 6th International Symposium 2006

    An investigation is presented into the processing window for friction stir welding (FSW) of Formall 545 (equivalent to AA-5083) to age-hardened AA-6082 aluminium alloys with regard to tool rotation and traverse speeds, and into an evaluation of a nu…

  15. Cui S., Chen Z., Robson J. 8th International Symposium 2010

    An experimental study was conducted to measure the torque of friction stir welded cast aluminium A356 (Al, 7%Si, 0.3%Mg) over a range of travel and rotational speeds. Plates of 6.35 mm thickness were FSW using travel speeds and rotational speeds ran…

  16. Sorensen C.D., Nelson T.W., Parker S.M., Steel R.J. 5th International Symposium 2004

    Technology improvements and process innovations in respect of friction stir welding (FSW) of high temperature materials are reviewed, welding process conditions and mechanical properties of completed welds for various alloys using polycrystalline cu…

  17. Monsarrat B., Larose S., Wanjara P., Fortin Y., Comeau G., Yousefpour A. 11th International Symposium 2016

    An investigation is presented into the development of a flexible 3D friction stir welding (FSW) process capacity incorporating a rail mounted industrial robot to facilitate high production rate repair of aluminium cathodes for electro refining opera…

  18. Williams S.W., Colgrove P.A., Shercliff H., Prangnell P., Robson J., Withers P., Richards D., Sullivan A., Kamp N., Lohwasser D., Poad M. 6th International Symposium 2006

    An integrated modelling approach, incorporating coupled process, material response and material performance models, was developed and implemented for use in friction stir welding (FSW) of aerospace structures. The process model employed was a dynami…

  19. Gerken J.A., Gratzel M., Bergmann J.P. 12th International Symposium 2018

    In order to study the relationship between material flow and the development of highly variant process forces during friction stir welding (FSW), a high sampling rate triaxial force measurement device and a high speed camera were employed to monitor…

  20. de Backer J., Cederqvist L., Soron M. 9th International Symposium 2012

    Lap joints were fabricated in AA 7075-T6 aluminium alloy sheets (thickness 2 mm) using an ESAB "Rosio" friction stir welding (FSW) robot and the effect tool of side-tilt angle on welded joint tensile strength was investigated. A "CounterStir" FSW to…

Loading...