TWI Digital Library

106 results in Symposia Papers
  1. Fraser K., St-Georges L., Kiss L.I. 11th International Symposium 2016

    An investigation is presented into a methodology for simulating the entire friction stir welding (FSW) process using a hybrid mesh free method on a graphics processing unit (GPU) and its implementation for different FSW applications such as butt joi…

  2. Ding R.J., Oelgoetz P.A. 1st International Symposium 1999

    A friction stir welding tool with a variable length probe (suitable for variable thickness joints, repairs and circumferential welding) was developed and evaluated for the welding of aluminium alloy 2195. Tapered sheet, of both increasing and decrea…

  3. Kostka A., Coelho R.S., Dos Santos J., Pyzalla A.R. 7th International Symposium 2008

    Friction stir welding (FSW) was employed to fabricate a single overlap joint between sheet specimens (thickness 1.5 mm) of an AA 6181-T4 aluminium alloy and ZStE-340 high-strength steel, and weld phase composition, microstructure and mechanical prop…

  4. Yasui T., Ishii T., Tsubaki M., Fukumoto M. 6th International Symposium 2006

    Friction stir welding experiments between AA 6063 aluminium alloy and S45C carbon steel (thickness 6 mm) were performed, and the effects of heat input on the butt joint macrostructure (cavities formed at weld interface), hardness and plastic flow of…

  5. Qin H.L., Zhang H., Wu H.Q. 10th International Symposium 2014

    Friction stir welding experiments were undertaken on 2195-T8 (Al, 3.99%Cu, 1.09%Li) alloy sheets (thickness 5 mm) and the weldability, microstructure and mechanical properties of the fabricated butt joints were investigated. Welding was performed us…

  6. Chen Z.W., Parningotan D., Li W., Tarrant M. 11th International Symposium 2016

    An experimental investigation was undertaken to examine how tool pin induced material flow and intermetallic growth conditions affect the formation of discontinuity during friction stir lap welding of dissimilar Al-Cu joints. The materials comprised…

  7. Strangwood M., Davis C.L., Attallah M.M. 5th International Symposium 2004

    The relationship between microstructure and properties in friction stir welding was studied. The effects of grain size, particle size and distribution, and dislocation density on weld strength in friction stir welds in work-hardenable Al alloy AA 52…

  8. Venukumar S., Muthukumaran S., Sooraj R. 10th International Symposium 2014

    A refill friction stir spot welding technique was employed to fabricate joints in AA 2014 aluminium alloy (Al, 3.51%Cu, 0.7%Mn) sheets (thickness 2 mm) and the effect of tool rotational speed on microstructure and mechanical properties was investiga…

  9. Juhas M.C., Viswanathan G.B., Fraser H.L. 2nd International Symposium 2000

    The microstructure of a friction stir weld (of unknown welding parameters) in titanium alloy (Ti, 6%Al, 4%V) is described. The microstructure was studied using optical microscopy, SEM and TEM. The features of the parent material, HAZ and the thermom…

  10. Xue P., Xiao B., Ma Z.Y. 10th International Symposium 2014

    Friction stir welding (FSW) was employed to fabricate dissimilar joints between 1060 aluminium alloys and commercially pure Cu under various process conditions and microstructure and mechanical properties studies were conducted to investigate interm…

  11. Chen C.L., Al-Badairy H., Tatlock G.J., Jones A., McColvin G. 7th International Symposium 2008

    A comprehensive microstructural investigation, incorporating SEM, TEM, STEM (scanning transmission electron microscopy) and EBSD (electron backscattering diffraction), was undertaken on PM 2000 (Fe, 20%Cr, 5.5%Al, 0.5%Ti, 0.5%Y2O3) ODS (oxide disper…

  12. Kumai S., Watanabe M. 7th International Symposium 2008

    Dissimilar lap joints were fabricated between 6022 aluminium alloy and SPCC low carbon steel using friction stir welding (FSW) and the effect of probe tip position on microstructure and mechanical properties was investigated. FSW was performed at a …

  13. Zettler R., dos Santos J.F., Donath T., Beckmann F., Lohwasser D. 6th International Symposium 2006

    A friction stir welding (FSW) procedure, incorporating the use of different tool pins in combination with concave or scroll type shoulders, was employed to join various aluminium alloys; material flow was investigated with the aid of computer micro-…

  14. Lin P.C., Liao P.S., Su Z.M., Aoh J.N. 10th International Symposium 2014

    Dissimilar joints between 6061-T4 aluminium alloy and S45C steel sheets (thickness 1.6 mm and 1 mm, respectively) were fabricated by the friction stir clinching technique using two types of tools and their mechanical properties and failure modes wer…

  15. North T.H., Bendzsak G.J., Smith C.B. 2nd International Symposium 2000

    The viscosity of aluminium alloy 6061-T6 was determined to obtain data necessary for the modelling of friction stir welding. A friction stir welding tool with a 5 mm diameter pin was plunged into an alloy disc (tool speeds 900-1500 rev/min, plunge d…

  16. Kinchen D.G., Li Z.X., Adams G.P. 1st International Symposium 1999

    Friction stir welds were made in Al-Li 2195 aluminium alloy plate, 2195 plate was welded to 2219 aluminium alloy forgings, and the welds were characterised by studies of mechanical properties, microstructure and NDE. Welds were made in plate of 8.1 …

  17. Hirata T., Tanaka T., Chung S.W., Takigawa Y., Higashi K. 7th International Symposium 2008

    The deformation behaviour and microstructural evolution of friction stir processed Zn, 22%Al rolled sheet (thickness 3 mm) were compared with those of the corresponding superplastic alloy. Friction stir processing was performed at a rotational speed…

  18. Huber N., Heerens J., Rao D., dos Santos J.F. 8th International Symposium 2010

    Local stress-strain curves were determined from an array of spherical indents on the cross-section of the joint of a friction stir welded (FSW) high strength aluminium alloy AA 2198 sheet, in order to characterise the mechanical properties of differ…

  19. da Silva M., Gougeon P., St-Georges L., Chen X.G. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on butt joints of AA6063 alloys (Al, 0.45-0.9%Mg, 0.2-0.6%Si) and AA6063 matrix reinforced with 6 and 10.5 vol.% B4C, and the effect of particle concentration on welded joint microstructure and micro…

  20. Aldanondo E., Arruti E., Auzmendi G., Echeverria A., Alvarez P. 9th International Symposium 2012

    Butt joints between dissimilar aluminium alloys were fabricated by friction stir spot welding (FSSW) in order to investigate the influence of process conditions on material flow phenomena and intermixing patterns. The dissimilar joint combinations s…

Loading...