TWI Digital Library

815 results in Symposia Papers
  1. Schmidt H., Hattel J. 5th International Symposium 2004

    A fully coupled thermomechanical three dimensional finite element (FE) model was developed to analyse the thermomechanical conditions, including material flow and heat generation, at the tool/matrix interface in friction stir welding. The model was …

  2. Troost N.C.H., Mohandas N., Cater S., Popovich V.A., den Besten J.H. 13th International Symposium 2024

    Friction stir welds were produced from S460N and S355N steel alloys for several combinations of welding speed and rotational speed with the heat input ranging from 130 to 180 [J/mm]; or, from insufficient to excessive. The welds were characterised a…

  3. Fraser K., Nadeau F., Noormohammed S., Kiss L., St-Georges L. 12th International Symposium 2018

    With regard to the development of hybrid friction stir welding-adhesive bonding (FSW-AB) for the fabrication of lap joints, a mesh free coupled thermomechanical simulation of the FSW-AB process was undertaken using the SPHriction-3D code and the num…

  4. Reynolds A.P., Tang W. 9th International Symposium 2012

    An investigation was undertaken to examine the effects of high welding speed and the use of thermal boundary conditions during friction stir welding (FSW) on the mechanical properties of AA 7050 aluminium alloy weldments. FSW experiments were perfor…

  5. Galvao I., Leal R.M., Rodrigues D.M., Loureiro A. 8th International Symposium 2010

    The aim of this investigation was to study morphological, mechanical and microstructural properties of similar and dissimilar friction stir welds in 1 mm thick sheets of phosphorous-­deoxidised copper and 5083-H111 aluminium alloy. At the weldin…

  6. Posada M., Becker D., Szpara S. 8th International Symposium 2010

    The development of friction stir welding (FSW) as a potential low distortion, cost-effective joining method for HSLA-65 steel T-joints is presented with reference to application in the ship building industry. Experiments were carried out on steel (0…

  7. Yasui T., Wu-Bian T., Hanai A., Mori T., Hirosawa K., Fukumoto M. 12th International Symposium 2018

    With regard to the development of a hybrid structure tool holder to facilitate chatter vibration suppression in metal cutting processes, an investigation was undertaken into the use of friction stir girth welding (FSGW) to fabricate dissimilar joint…

  8. Steuwer A., Peel M.J., Withers P.J. 6th International Symposium 2006

    An investigation is presented into the processing window for friction stir welding (FSW) of Formall 545 (equivalent to AA-5083) to age-hardened AA-6082 aluminium alloys with regard to tool rotation and traverse speeds, and into an evaluation of a nu…

  9. Oki S., Tsujikawa M., Okawa Y., Takahara H., Chung S.W., Higashi K. 6th International Symposium 2006

    5083-O aluminium alloy sheets (thickness 3 mm) were butt welded using a gate-type friction stir welding (FSW) machine to investigate tolerance to deviations in butt-line/tool-travel line, gap spacing and tool roll angle, and the welded joints were e…

  10. Sato Y.S., Abe N., Suhuddin U.F.H.R., Kokawa H. 8th International Symposium 2010

    In relation to the application of tailor welded blanks of aluminium alloys to the vehicle weight reduction process, an investigation is presented into the precipitation sequence in friction stir welded 6016 alloy sheets (thickness 2 mm) during a pai…

  11. Volovitch P., Masse J.E., Baudin T., Da Costa B., Goussain J.C., Saikaly W., Barrallier L. 5th International Symposium 2004

    Friction stir welding (FSW) was applied to the magnesium alloy AZ91 (Mg, 8.21%Al, 0.64%Zn), optimum welding parameters were derived, structural and mechanical properties of the weld zone were determined, and the influence of microstructure on weld p…

  12. Sato Y.S., Sugiura Y., Kokawa H. 4th International Symposium 2003

    The use of friction stir welding to produce aluminium alloy tailor welded blanks for automotive applications was investigated by measuring the hardness and microstructure of friction stir welds in aluminium alloy 5052 (Al, 2.46%Mg, 0.24%Fe, 0.15%Cr,…

  13. Hassan K.A.A., Wynne B.P., Prangnell P.B. 4th International Symposium 2003

    Torsion testing was carried out using a range of temperatures and strains to simulate the formation of nugget zone grain structures in friction stir welds of a typical aluminium alloy (7010) in order to investigate the formation mechanisms. Electron…

  14. Juricic C., Dalle Donne C., Dressler U. 3rd International Symposium 2001

    The effects of pre and post weld heat treatments on the strength, fracture toughness and fatigue crack propagation of welds made by friction stir welding (FSW) in aluminium alloy 6013-T6 sheet material, which may replace the 2024-T3 skin alloy for f…

  15. Smith A.J., Almoussawi M. 12th International Symposium 2018

    An experimental and numerical analysis of the wear of a polycrystalline boron nitride (PCBN) friction stir welding (FSW) tool is overviewed as presentation slides. Topics highlighted include: FSW plunge trials of EH46 shipbuilding steel at a plunge …

  16. Kahnert M., Radtke W., Masny H., Hegels J., Mestek M., Eigen N. 8th International Symposium 2010

    The integration of friction stir welding (FSW) into the manufacturing sequence of spinformed domes of aluminium alloys is presented in terms of its optimisation and the specific iterations required with the prior and follow-up procedures of the manu…

  17. Smith C.B., Hinrichs J.F., Cerveny L.M., Anderson R. 7th International Symposium 2008

    An investigation is presented into the use of a friction stir welding/forging process to fabricate tee and I-beam shapes with integral radial shaped fillets, the optimisation of process parameters for different alloys and shapes, and the results of …

  18. Cole E.G., Ferrier N.J., Zinn M.R., Duffie N.A., Pfefferkorn F.E. 9th International Symposium 2012

    Friction stir welding (FSW) experiments were undertaken on sheet specimens (thickness 5 mm) of 5454-H111 aluminium alloys and the relationships between process forces, spindle power and tool geometry were investigated. Twelve FSW tools with specifie…

  19. Wang Y.S., Tong J.H., Li C.Q., Luan G.H. 9th International Symposium 2012

    A friction stir welding (FSW) methodology incorporating laser tracking and constant force control technologies was developed in order to fabricate large, thin-walled aircraft floor structures. The material chosen for study comprised sheet specimens …

  20. Capar N., Tekelioglu O., Calli M., Tekin G., Kumru U.C., Baser T., Yilmazoglu G. 12th International Symposium 2018

    With regard to the development of dissimilar aluminium-steel joint fabrication for automotive applications such as body-in-white, an investigation incorporating experiment and numerical simulation was undertaken to examine the dissimilar friction st…

Loading...