TWI

141 results in Symposia Papers
  1. Simmons T. 3rd International Symposium 2001

    The decision to use friction stir welding (FSW) in the manufacture of aluminium alloy car wheels by Simmons Wheels, Sydney, Australia is described. Rim sections are formed from alloy 6061 in thicknesses of 4-6 mm. These are attached to cast or forge…

  2. Bussu G., Irving P.E. 1st International Symposium 1999

    Friction stir welded joints in 2024-T351 Al-Cu-Mg alloy were subjected to fatigue testing to evaluate the suitability of this welding process for aircraft manufacture. Aluminium alloy (Al, 3.8-4.9%Cu, 1.2-1.8%Cu, 0.5%Si, 0.5%Fe, 0.2%Zr) of 6.35 mm (…

  3. Mercado U.A., Ghidini T., Dalle Donne C., Braun R. 5th International Symposium 2004

    The effects of post weld heat treatments on the mechanical properties and corrosion resistance of friction stir welded dissimilar aluminium alloy joints (2024/6056) were studied. Sheets of 4 mm thickness were first joined in heat treatments T3 for 2…

  4. Ericsson M., Sandstrom R. 5th International Symposium 2004

    An investigation is presented into the fatigue characteristics of friction stir welded (FSW) lap joints made from artificially aged Al alloy 6082 (Al, 0.6-1.2%Mg, 0.7-1.3%Si) using a tool based on the "Triflute" concept with either convex or concave…

  5. Record J.H., Covington J.L., Nelson T.W., Sorensen C.D., Webb B.W. 5th International Symposium 2004

    A 16-run screening design of experiments (DOE) was conducted to analyse the effects of nine factors during friction stir welding on process forces, temperatures and shoulder depth. The factors were spindle speed, feed rate, plunge depth, pin length,…

  6. Ericsson M., Sandstrom R., Hagstrom J. 2nd International Symposium 2000

    The tensile and fatigue strength of friction stir welds were determined for aluminium alloy 6082 in various temper conditions. Plate of 5.8 mm thickness, in both T6 and T4 conditions, was welded using a tool speed of 1000 rev/min and a welding speed…

  7. Hashimoto T., Jyogan S., Nakata K., Kim Y.G., Ushio M. 1st International Symposium 1999

    The effects of friction stir welding process parameters (tool rotation speed and travel speed) on defects and mechanical properties in welds in aluminium alloys were investigated. Microstructural, macrostructural and mechanical properties of the wel…

  8. Kolluri M., Luzginova N.V., Schuring E.W., Kyffin W., Martin J. 9th International Symposium 2012

    In relation to the application of ferritic/martensitic steels as cladding and duct materials in advanced nuclear reactors, an investigation is presented into the friction stir welding of P91 high alloy steel (0.11%C, 0.45%Mn, 8.41%Cr, 0.96%Mo) plate…

  9. Wronska A., Dudek A., Derlatka A., Luty G. 11th International Symposium 2016

    Friction stir welding (FSW) was employed to fabricate overlap joints in thin AA 7075-T6 aluminium alloy (Al, 5.1-6.1%Zn, 2.1-2.9%Mg, 1.2-2%Cu) sheets (thickness 0.8 mm) coated with an anticorrosive aluminium layer and the microstructure and mechanic…

  10. Grimm A., Goebel G., Beyer E. 9th International Symposium 2012

    A methodology to facilitate cost-effective friction stir welding (FSW) of large and complex 3D structures is presented based on a parallel kinematic machine concept called Pentapod, and welding trial results for spherical structures and dissimilar m…

  11. Avila J.A., Ruchert C.O.F.T., Mei P.R., Marinho R.R., Paes M.T.P., Ramirez A.J. 10th International Symposium 2014

    A two-run friction stir welding process was employed to fabricate butt joints in API 5L X80 pipeline steel (0.08%C, 1.86%Mn, 0.16%Cr, 0.01%Ni, 0.18%Mo, 0.03%V, 0.06%Nb) plates (thickness 12 mm) and fracture toughness was determined in the parent met…

  12. Thompson B., Doherty K., Niese C., Eff M., Stotler T., Pramann Z., Seaman J., Spencer R., White P. 9th International Symposium 2012

    With regard to the development of aluminium military vehicles, a report is presented into production level single run friction stir welding (FSW) process parameters for thick plate samples (thickness 12.7-40.6 mm) of 5083, 5059 and 2139 aluminium al…

  13. Minton T., Au J., Bulpett R. 7th International Symposium 2008

    Friction stir welding experiments were undertaken on commercial SPF (superplastic forming) AA 5083-H19 (Al, 4.43%Mg) and AA 2004 (Al, 6.05%Cu) aluminium alloys, and the effects of tool size, geometry and primary process variables on microstructure a…

  14. Chen Y.C., Nakata K. 7th International Symposium 2008

    Friction stir lap welding of aluminium alloy to magnesium alloy was investigated, emphasising the tensile strength, fracture location in the joint and microstructure evolution in the weld under different welding heat inputs. Dissimilar joints betwee…

  15. Addison A.C., Robelou A.J. 5th International Symposium 2004

    A study was conducted to assess friction stir spot welding (FSSW), to identify and investigate the effects of the principal FSSW parameters and to investigate the effectiveness of common friction stir welding (FSW) tool designs when used for FSSW. A…

  16. Fuller C., Mahoney M., Bingel W. 4th International Symposium 2003

    An experimental study was carried out to investigate the effect of friction stir processing (FSP) on the microstructure and mechanical properties of fusion welded aluminium alloys. MIG welds in plates of thickness 6 mm of 5083-H321 aluminium alloy (…

  17. McLane M.W., Carter P.W. 4th International Symposium 2003

    Forces experienced by the pin and the workpiece during friction stir welding were measured and used to design a friction stir welding machine which would accept a curved workpiece fed through the machine by hand. Forces in three perpendicular direct…

  18. Hori H., Makita S., Hino H. 1st International Symposium 1999

    Friction stir welding of aluminium alloy JIS-6N01-T5 (Al, 0.4-0.8%Mg, 0.4-0.9%Si) was investigated for subway [underground railway] rolling stock applications by comparing the welded joint properties with those of MIG and laser welded joints. Sheet …

  19. Marie F., Batalla F. 9th International Symposium 2012

    Use of friction stir welding (FSW) to replace mechanical fastening in fabrication of an aircraft component in the ROCT Project (Rib One with Crux and Tees) is described. Design is shown of the part, which was assembled using four butt welds from wro…

  20. Mroczka K., Pietras A. 10th International Symposium 2014

    Dissimilar joints between 2017A-T451 (Al, 4.14%Cu, 0.72%Mg, 0.68%Si) and AlSi9Mg (Al, 8.6%Si, 0.64%Fe, 0.34%Mn, 0.31%Mg) aluminium alloys were fabricated by a friction stir welding process featuring different rates of rotation of the pin and shoulde…

Loading...