TWI Digital Library

39 results in Symposia Papers
  1. Imam M., Sun Y.F., Fujii H., Ma N., Tsutsumi S., Murakawa H. 11th International Symposium 2016

    Defect free welded joints were fabricated in 5083-O aluminium alloy (Al, 4.3%Mg, 0.65%Mn) plates (thickness 20 mm) by friction stir welding (FSW) and the influence of tool geometrical features on their microstructures and structure properties relati…

  2. St-Georges L., Dasylva-Raymond V., Kiss L.I., Perron A.L. 6th International Symposium 2006

    A computational fluid dynamics code ("CosmosFlow") was employed to evaluate the temperature distribution in materials during friction stir welding (FSW). Thermal simulations based on finite element models were undertaken to predict the optimum ratio…

  3. Jun H.J., Ayer R. 6th International Symposium 2006

    An experimental investigation is presented into the precipitation and hardening mechanism during FSW (friction stir welding) of Ni model alloys (Ni, 20%Cr, 2%Al, 2%Ti and Ni, 20%Cr, 3%Al, 3%Ti) in which Al and Ti contents were varied to control the …

  4. Mazzaferro J.A.E., de Souza Rosendo T., Mazzaferro C.C.P., Ramos F.D., Tier M.A.D., Strohaecker T.R., dos Santos J.F. 7th International Symposium 2008

    An analysis procedure was developed to relate the geometry and microstructure of lap configuration friction spot welds to the joints' mechanical behaviour. Using 2 mm thickness aluminium alloy AA 2024-T3 sheet as the basis for simulation, a three-di…

  5. Clark C.R. 5th International Symposium 2004

    A modified friction stir lap welding process was developed to encase uranium alloy foil in an aluminium jacket and results were compared with two other bonding methods for fabricating monolithic fuel plates, namely hot isostatic pressing and transie…

  6. Liu S., Bor T.C., Geijselaers H.J.M., Akkerman R. 11th International Symposium 2016

    Experimental measurements and finite element modelling were undertaken to investigate the deposition of AA1050 commercially pure aluminium layers on AA 2024-T351 aluminium alloy substrates by friction surface cladding (FSC). Experiments were perform…

  7. Liu S., Bor T.C., Geijselaers H.J.M., Akkerman R. 11th International Symposium 2016

    Experimental measurements and finite element modelling were undertaken to investigate the deposition of AA1050 commercially pure aluminium layers on AA 2024-T351 aluminium alloy substrates by friction surface cladding (FSC). Experiments were perform…

  8. Yan J.H., Sutton M.A., Reynolds A.P. 5th International Symposium 2004

    The effects of rotation speed, welding speed and Z-axis force on process response variables (power, specific energy, torque, X-axis force) and properties (nugget hardness, strength and ductility, nugget grain size and HAZ hardness) of AA2524-T351 fr…

  9. Leonhardt T., Thompson B. 9th International Symposium 2012

    A review is presented of the development of W, 25%Re friction stir welding (FSW) tool materials for application to steels and hard metals, such as titanium and nickel-based superalloys. Issues discussed include: the DUST (dual use science and techno…

  10. Nakazawa T., Tanaka K., Sakairi K., Sato Y.S., Kokawa H., Omori T., Ishida K., Hirano S. 11th International Symposium 2016

    An investigation was undertaken into the development and wear performance of friction stir welding (FSW) tools made from precipitation strengthened Ir-containing nickel-based superalloys (Ni, 25%Ir, 14%W, 4%Al) during FSW of Ti, 6%Al, 4%V alloys. Th…

  11. Regev M., Spigarelli S. 10th International Symposium 2014

    Magnesium alloy AZ31H-H24 sheet of 3.175 mm in thickness was friction stir welded (FSW) using an H-13 tool having a shoulder of 20 mm diameter and a slightly tapered pin (4.5-5.5 mm diameter). Welds were made at 1000-2000 rpm and 20-300 mm/minute. T…

  12. Shrivastava A., Zinn M., Duffie N., Pfefferkorn F.E., Ferrier N.J., Smith C.B. 10th International Symposium 2014

    Process force and discontinuity models were derived to estimate the forces observed in friction stir welding (FSW) in order to develop a method of detecting discontinuities during FSW using physics-based process modelling. FSW welded joints with and…

  13. Abdollah-Zadeh A., Mehri A., Entesari S., Assadi H. 10th International Symposium 2014

    Numerical modelling and experimental measurements were undertaken to investigate the extension and microstructure of the HAZ during friction stir welding (FSW) of 7075 aluminium alloy (Al, 5.86%Zn, 2.37%Mg, 1.91%Cu) thin sheets (thickness 1.2 mm). W…

  14. Cederqvist L., Reynolds A.P. 2nd International Symposium 2000

    Lap joints between 2 mm aluminium alloy sheet in 2024-T3 (Al, 4.4%Cu, 1.5%Mg, 0.6%Mn) and 7075-T6 (Al, 1.6%Cu, 2.5%Mg, 0.23%Cr, 5.6%Zn) were prepared and evaluated. The welds were produced using a range of welding and tool speeds, with a non-threade…

  15. Sinfield M.F., Lippold J.C., Alexandrov B.T. 7th International Symposium 2008

    Modified Gleeble hot torsion testing was used to simulate four microstructure regions in HSLA-65 steel (0.07%C, 0.24%Si, 1.5%Mn, 0.14%Cr, 0.34%Ni, 0.25%Cu, 0.06%Mo) joints fabricated by friction stir welding (FSW) and the results were verified by op…

  16. Bergmann J.P., Regensburg A., Schurer R., Weigl M. 11th International Symposium 2016

    An investigation was undertaken to examine the interactions, required process adjustments and resultant joint properties associated with conventional and robotic stationary shoulder friction stir welding (SSFSW) for scaled tool geometries. In order …

  17. Eigen N., Masny H., Kahnert M., Windisch M., Radtke W. 8th International Symposium 2010

    The microstructure, hardness, tensile strength and fracture toughness of friction stir welds in cryogenic tanks made from standard AA2219 AlCu alloy and advanced AA2195 AlCuLi alloy (5 mm thickness) were investigated. AA2195 has relatively low densi…

  18. Miyake M., Sato Y.S., Kokawa H. 8th International Symposium 2010

    The influence of weld length on pin breakage during friction stir welding (FSW) of aluminium alloy was investigated. Tool geometry, microstructure, pin diameter and the occurrence of cracking were studied during welding. Welded joints were made in 7…

  19. Kahnert M., Mestek M., Windisch M., Tessier I., Okualla M. 9th International Symposium 2012

    With regard to the application of friction stir welding (FSW) to the production of launcher tanks holding cryogenic liquids, an investigation was undertaken to establish a robust and industrialised FSW process for AA 2219 alloys in T87 and T851 cond…

  20. Ghidini T., Dalle Donne C. 4th International Symposium 2003

    Fatigue crack growth in friction stir welded (FSW) aluminium alloys 2024-T3 and 6013-T6 were predicted using two commercial software programs, ESACRACK and AFGROW in order to facilitate lifetime predictions of FSW aircraft structures. The following …

Loading...